Weil's formulae and multiplicity
Maria Frontczak; Andrzej Miodek
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 103-108
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMaria Frontczak, and Andrzej Miodek. "Weil's formulae and multiplicity." Annales Polonici Mathematici 55.1 (1991): 103-108. <http://eudml.org/doc/262352>.
@article{MariaFrontczak1991,
abstract = {The integral representation for the multiplicity of an isolated zero of a holomorphic mapping $f : (ℂ^n,0) → (ℂ^n,0)$ by means of Weil’s formulae is obtained.},
author = {Maria Frontczak, Andrzej Miodek},
journal = {Annales Polonici Mathematici},
keywords = {holomorphic mapping germ; isolated singularity multiplicity; integral formula; Weil's formula},
language = {eng},
number = {1},
pages = {103-108},
title = {Weil's formulae and multiplicity},
url = {http://eudml.org/doc/262352},
volume = {55},
year = {1991},
}
TY - JOUR
AU - Maria Frontczak
AU - Andrzej Miodek
TI - Weil's formulae and multiplicity
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 103
EP - 108
AB - The integral representation for the multiplicity of an isolated zero of a holomorphic mapping $f : (ℂ^n,0) → (ℂ^n,0)$ by means of Weil’s formulae is obtained.
LA - eng
KW - holomorphic mapping germ; isolated singularity multiplicity; integral formula; Weil's formula
UR - http://eudml.org/doc/262352
ER -
References
top- [1] E. M. Chirka, Complex Analytic Sets, Nauka, Moscow 1985 (in Russian). Zbl0781.32011
- [2] R. Engelking, General Topology, PWN, Warszawa 1977.
- [3] H. Federer, Geometric Measure Theory, Springer, New York 1969. Zbl0176.00801
- [4] M. Frontczak, Integral representations of Cauchy type for holomorphic functions on Weil's domains, Bull. Soc. Sci. Łódź, to appear. Zbl0878.32007
- [5] M. Frontczak, A new simple proof of Weil's integral formula for canonical domains, Bull. Soc. Sci. Łódź, to appear. Zbl0878.32008
- [6] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York 1978. Zbl0408.14001
- [7] M. Hervé, Several Complex Variables, Local Theory, Oxford Univ. Press, Bombay 1963. Zbl0113.29003
- [8] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette 1965.
- [9] S. Łojasiewicz, Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish). Zbl0773.32007
- [10] B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow 1985 (in Russian). Zbl0574.30001
- [11] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Mass., 1972. Zbl0265.32008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.