The homogeneous transfinite diameter of a compact subset of
Annales Polonici Mathematici (1991)
- Volume: 55, Issue: 1, page 191-205
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topMieczysław Jędrzejowski. "The homogeneous transfinite diameter of a compact subset of $ℂ^N$." Annales Polonici Mathematici 55.1 (1991): 191-205. <http://eudml.org/doc/262363>.
@article{MieczysławJędrzejowski1991,
abstract = {Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.},
author = {Mieczysław Jędrzejowski},
journal = {Annales Polonici Mathematici},
keywords = {Chebyshev constant; homogeneous polynomials; extremal points; compact subset; homogeneous transfinite diameter},
language = {eng},
number = {1},
pages = {191-205},
title = {The homogeneous transfinite diameter of a compact subset of $ℂ^N$},
url = {http://eudml.org/doc/262363},
volume = {55},
year = {1991},
}
TY - JOUR
AU - Mieczysław Jędrzejowski
TI - The homogeneous transfinite diameter of a compact subset of $ℂ^N$
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 191
EP - 205
AB - Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.
LA - eng
KW - Chebyshev constant; homogeneous polynomials; extremal points; compact subset; homogeneous transfinite diameter
UR - http://eudml.org/doc/262363
ER -
References
top- [1] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
- [2] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in and , preprint, 1989. Zbl0763.32009
- [3] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
- [4] F. Leja, Sur les séries des polynômes homogènes, Rend. Circ. Mat. Palermo 56 (1932), 419-445.
- [5] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
- [6] F. Leja, Problèmes à résoudre posés à la Conférence, Colloq. Math. 7 (1959), 153.
- [7] N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in , Trans. Amer. Math. Soc. 289 (1) (1985), 333-343. Zbl0541.31009
- [8] N. Levenberg and B. A. Taylor, Comparison of capacities in , in: Proc. Toulouse 1983, Lecture Notes in Math. 1094, Springer, 1984, 162-172.
- [9] Nguyen Thanh Van, Familles de polynômes ponctuellement bornées, Ann. Polon. Math. 31 (1975), 83-90. Zbl0263.30004
- [10] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Technical Report, Stanford 1961. Zbl0113.06202
- [11] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. Zbl0111.08102
- [12] J. Siciak, Extremal plurisubharmonic functions and capacities in , Sophia Kokyuroku in Math. 14, Sophia University, Tokyo 1982. Zbl0579.32025
- [13] J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (2) (1988), 193-211. Zbl0634.31005
- [14] V. P. Zakharyuta, Transfinite diameter, Chebyshev constants and a capacity of a compact set in , Mat. Sb. 96 (138) (3) (1975), 374-389 (in Russian). Zbl0324.32009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.