# The homogeneous transfinite diameter of a compact subset of ${\u2102}^{N}$

Annales Polonici Mathematici (1991)

- Volume: 55, Issue: 1, page 191-205
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topMieczysław Jędrzejowski. "The homogeneous transfinite diameter of a compact subset of $ℂ^N$." Annales Polonici Mathematici 55.1 (1991): 191-205. <http://eudml.org/doc/262363>.

@article{MieczysławJędrzejowski1991,

abstract = {Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.},

author = {Mieczysław Jędrzejowski},

journal = {Annales Polonici Mathematici},

keywords = {Chebyshev constant; homogeneous polynomials; extremal points; compact subset; homogeneous transfinite diameter},

language = {eng},

number = {1},

pages = {191-205},

title = {The homogeneous transfinite diameter of a compact subset of $ℂ^N$},

url = {http://eudml.org/doc/262363},

volume = {55},

year = {1991},

}

TY - JOUR

AU - Mieczysław Jędrzejowski

TI - The homogeneous transfinite diameter of a compact subset of $ℂ^N$

JO - Annales Polonici Mathematici

PY - 1991

VL - 55

IS - 1

SP - 191

EP - 205

AB - Let K be a compact subset of $ℂ^N$. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of $ℂ^N$ is computed.

LA - eng

KW - Chebyshev constant; homogeneous polynomials; extremal points; compact subset; homogeneous transfinite diameter

UR - http://eudml.org/doc/262363

ER -

## References

top- [1] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
- [2] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in $\u2102$ and ${\u2102}^{n}$, preprint, 1989. Zbl0763.32009
- [3] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
- [4] F. Leja, Sur les séries des polynômes homogènes, Rend. Circ. Mat. Palermo 56 (1932), 419-445.
- [5] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
- [6] F. Leja, Problèmes à résoudre posés à la Conférence, Colloq. Math. 7 (1959), 153.
- [7] N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in ${\u2102}^{N}$, Trans. Amer. Math. Soc. 289 (1) (1985), 333-343. Zbl0541.31009
- [8] N. Levenberg and B. A. Taylor, Comparison of capacities in ${\u2102}^{n}$, in: Proc. Toulouse 1983, Lecture Notes in Math. 1094, Springer, 1984, 162-172.
- [9] Nguyen Thanh Van, Familles de polynômes ponctuellement bornées, Ann. Polon. Math. 31 (1975), 83-90. Zbl0263.30004
- [10] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Technical Report, Stanford 1961. Zbl0113.06202
- [11] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. Zbl0111.08102
- [12] J. Siciak, Extremal plurisubharmonic functions and capacities in ${\u2102}^{n}$, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo 1982. Zbl0579.32025
- [13] J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (2) (1988), 193-211. Zbl0634.31005
- [14] V. P. Zakharyuta, Transfinite diameter, Chebyshev constants and a capacity of a compact set in ${\u2102}^{n}$, Mat. Sb. 96 (138) (3) (1975), 374-389 (in Russian). Zbl0324.32009

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.