On the multivariate transfinite diameter

Thomas Bloom; Jean-Paul Calvi

Annales Polonici Mathematici (1999)

  • Volume: 72, Issue: 3, page 285-305
  • ISSN: 0066-2216

Abstract

top
We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.

How to cite

top

Bloom, Thomas, and Calvi, Jean-Paul. "On the multivariate transfinite diameter." Annales Polonici Mathematici 72.3 (1999): 285-305. <http://eudml.org/doc/262636>.

@article{Bloom1999,
abstract = {We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.},
author = {Bloom, Thomas, Calvi, Jean-Paul},
journal = {Annales Polonici Mathematici},
keywords = {Robin's functions; extremal plurisubharmonic functions; minimal polynomials; multivariate transfinite diameter; Chebyshev polynomials},
language = {eng},
number = {3},
pages = {285-305},
title = {On the multivariate transfinite diameter},
url = {http://eudml.org/doc/262636},
volume = {72},
year = {1999},
}

TY - JOUR
AU - Bloom, Thomas
AU - Calvi, Jean-Paul
TI - On the multivariate transfinite diameter
JO - Annales Polonici Mathematici
PY - 1999
VL - 72
IS - 3
SP - 285
EP - 305
AB - We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.
LA - eng
KW - Robin's functions; extremal plurisubharmonic functions; minimal polynomials; multivariate transfinite diameter; Chebyshev polynomials
UR - http://eudml.org/doc/262636
ER -

References

top
  1. [Ba] M. Baran, Conjugate norms in n and related geometrical problems, Dissertationes Math. 378 (1998). 
  2. [BT] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171. Zbl0626.32022
  3. [BT2] E. Bedford and B. A. Taylor, Fine topology, Šilov boundary, and ( d d c ) n , J. Funct. Anal. 72 (1987), 225-251. Zbl0677.31005
  4. [Blo] Z. Błocki, The equilibrium measure for product subsets of n , preprint, 1999. 
  5. [Bl] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1-21. Zbl0896.31003
  6. [BBCL] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and n , Rocky Mountain J. Math. 22 (1992), 441-470. Zbl0763.32009
  7. [BC] T. Bloom and J.-P. Calvi, On multivariate minimal polynomials, preprint, 1999. 
  8. [Bo] L. Bos, A characteristic of points in 2 having a Lebesgue function of exponential growth, J. Approx. Theory 56 (1989), 316-329. Zbl0675.41013
  9. [Go] G. M. Goluzin, Geometric Theory of a Function of a Complex Variable, Amer. Math. Soc., Providence, 1969. Zbl0183.07502
  10. [Je] M. Jędrzejowski, The homogeneous transfinite diameter of a compact subset of n , Ann. Polon. Math. 55 (1991), 191-205. Zbl0748.31008
  11. [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, Oxford, 1991. 
  12. [Kl2] M. Klimek, Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 125 (1995), 2763-2770. Zbl0935.32028
  13. [Le] N. Levenberg, Capacities in Several Complex Variables, thesis, University of Michigan, 1984. 
  14. [LT] N. Levenberg and B. A. Taylor, Comparison of capacities in n , in: Lectures Notes in Math. 1094, Springer, 1984, 162-172. 
  15. [NZ] T. V. Nguyen et A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), 81-91. Zbl0523.32011
  16. [Ra] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995. 
  17. [SS] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, in: Studies in Math. Analysis and Related Topics, Stanford Univ. Press, 1962, 341-358. 
  18. [Sh] V. P. Sheĭnov, Invariant form of Pólya's inequalities, Siberian Math. J. 14 (1973), 138-145. 
  19. [Si1] J. Siciak, Extremal plurisubharmonic functions on N , Ann. Polon. Math. 39 (1981), 175-211. 
  20. [Si2] J. Siciak, A remark on Tchebysheff polynomials in n , Univ. Iagell. Acta Math. 35 (1997), 37-45. Zbl0951.32011
  21. [Za] V. P. Zaharjuta [V. P. Zakharyuta], Transfinite diameter, Chebyshev constants, and capacity for compacta in n , Math. USSR-Sb. 25 (1975), 350-364. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.