# On the multivariate transfinite diameter

Annales Polonici Mathematici (1999)

- Volume: 72, Issue: 3, page 285-305
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topBloom, Thomas, and Calvi, Jean-Paul. "On the multivariate transfinite diameter." Annales Polonici Mathematici 72.3 (1999): 285-305. <http://eudml.org/doc/262636>.

@article{Bloom1999,

abstract = {We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.},

author = {Bloom, Thomas, Calvi, Jean-Paul},

journal = {Annales Polonici Mathematici},

keywords = {Robin's functions; extremal plurisubharmonic functions; minimal polynomials; multivariate transfinite diameter; Chebyshev polynomials},

language = {eng},

number = {3},

pages = {285-305},

title = {On the multivariate transfinite diameter},

url = {http://eudml.org/doc/262636},

volume = {72},

year = {1999},

}

TY - JOUR

AU - Bloom, Thomas

AU - Calvi, Jean-Paul

TI - On the multivariate transfinite diameter

JO - Annales Polonici Mathematici

PY - 1999

VL - 72

IS - 3

SP - 285

EP - 305

AB - We prove several new results on the multivariate transfinite diameter and its connection with pluripotential theory: a formula for the transfinite diameter of a general product set, a comparison theorem and a new expression involving Robin's functions. We also study the transfinite diameter of the pre-image under certain proper polynomial mappings.

LA - eng

KW - Robin's functions; extremal plurisubharmonic functions; minimal polynomials; multivariate transfinite diameter; Chebyshev polynomials

UR - http://eudml.org/doc/262636

ER -

## References

top- [Ba] M. Baran, Conjugate norms in ${\u2102}^{n}$ and related geometrical problems, Dissertationes Math. 378 (1998).
- [BT] E. Bedford and B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 4, 133-171. Zbl0626.32022
- [BT2] E. Bedford and B. A. Taylor, Fine topology, Šilov boundary, and ${\left(d{d}^{c}\right)}^{n}$, J. Funct. Anal. 72 (1987), 225-251. Zbl0677.31005
- [Blo] Z. Błocki, The equilibrium measure for product subsets of ${\u2102}^{n}$, preprint, 1999.
- [Bl] T. Bloom, Some applications of the Robin function to multivariable approximation theory, J. Approx. Theory 92 (1998), 1-21. Zbl0896.31003
- [BBCL] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in ℂ and ${\u2102}^{n}$, Rocky Mountain J. Math. 22 (1992), 441-470. Zbl0763.32009
- [BC] T. Bloom and J.-P. Calvi, On multivariate minimal polynomials, preprint, 1999.
- [Bo] L. Bos, A characteristic of points in ${\mathbb{R}}^{2}$ having a Lebesgue function of exponential growth, J. Approx. Theory 56 (1989), 316-329. Zbl0675.41013
- [Go] G. M. Goluzin, Geometric Theory of a Function of a Complex Variable, Amer. Math. Soc., Providence, 1969. Zbl0183.07502
- [Je] M. Jędrzejowski, The homogeneous transfinite diameter of a compact subset of ${\u2102}^{n}$, Ann. Polon. Math. 55 (1991), 191-205. Zbl0748.31008
- [Kl] M. Klimek, Pluripotential Theory, Oxford Univ. Press, Oxford, 1991.
- [Kl2] M. Klimek, Metrics associated with extremal plurisubharmonic functions, Proc. Amer. Math. Soc. 125 (1995), 2763-2770. Zbl0935.32028
- [Le] N. Levenberg, Capacities in Several Complex Variables, thesis, University of Michigan, 1984.
- [LT] N. Levenberg and B. A. Taylor, Comparison of capacities in ${\u2102}^{n}$, in: Lectures Notes in Math. 1094, Springer, 1984, 162-172.
- [NZ] T. V. Nguyen et A. Zeriahi, Familles de polynômes presque partout bornées, Bull. Sci. Math. (2) 107 (1983), 81-91. Zbl0523.32011
- [Ra] T. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995.
- [SS] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, in: Studies in Math. Analysis and Related Topics, Stanford Univ. Press, 1962, 341-358.
- [Sh] V. P. Sheĭnov, Invariant form of Pólya's inequalities, Siberian Math. J. 14 (1973), 138-145.
- [Si1] J. Siciak, Extremal plurisubharmonic functions on ${\u2102}^{N}$, Ann. Polon. Math. 39 (1981), 175-211.
- [Si2] J. Siciak, A remark on Tchebysheff polynomials in ${\u2102}^{n}$, Univ. Iagell. Acta Math. 35 (1997), 37-45. Zbl0951.32011
- [Za] V. P. Zaharjuta [V. P. Zakharyuta], Transfinite diameter, Chebyshev constants, and capacity for compacta in ${\u2102}^{n}$, Math. USSR-Sb. 25 (1975), 350-364.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.