Distortion function and quasisymmetric mappings

J. Zając

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 361-369
  • ISSN: 0066-2216

Abstract

top
We study the relationship between the distortion function Φ K and normalized quasisymmetric mappings. This is part of a new method for solving the boundary values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on the extended complex plane.

How to cite

top

J. Zając. "Distortion function and quasisymmetric mappings." Annales Polonici Mathematici 55.1 (1991): 361-369. <http://eudml.org/doc/262398>.

@article{J1991,
abstract = {We study the relationship between the distortion function $Φ_K$ and normalized quasisymmetric mappings. This is part of a new method for solving the boundary values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on the extended complex plane.},
author = {J. Zając},
journal = {Annales Polonici Mathematici},
keywords = {quasisymmetric mappings; distortion function},
language = {eng},
number = {1},
pages = {361-369},
title = {Distortion function and quasisymmetric mappings},
url = {http://eudml.org/doc/262398},
volume = {55},
year = {1991},
}

TY - JOUR
AU - J. Zając
TI - Distortion function and quasisymmetric mappings
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 361
EP - 369
AB - We study the relationship between the distortion function $Φ_K$ and normalized quasisymmetric mappings. This is part of a new method for solving the boundary values problem for an arbitrary K-quasiconformal automorphism of a generalized disc on the extended complex plane.
LA - eng
KW - quasisymmetric mappings; distortion function
UR - http://eudml.org/doc/262398
ER -

References

top
  1. [AVV1] G. D. Anderson, M. K. Vamanamurphy and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62 (1) (1988), 1-16. 
  2. [AVV2] G. D. Anderson, M. K. Vamanamurphy and M. Vuorinen, Functional inequalities for hypergeometric and related functions, Univ. of Auckland, Rep. Ser. 242, 1990. 
  3. [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125-142. Zbl0072.29602
  4. [HP] J. Hersch et A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43-45. Zbl0049.06304
  5. [H] O. Hübner, Remarks on a paper by Ławrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. 18 (1980), 183-186. Zbl0195.36501
  6. [Ke] J. A. Kelingos, Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13 (1966), 235-249. Zbl0146.30702
  7. [Kr1] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. 12 (1987), 19-24. Zbl0563.30016
  8. [Kr2] J. G. Krzyż, Harmonic analysis and boundary correspondence under quasiconformal mappings, ibid. 14 (1989), 225-242. Zbl0663.30014
  9. [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York 1973. Zbl0267.30016
  10. [W] C.-F. Wang, On the precision of Mori's theorem in Q-mappings, Science Record 4 (1960), 329-333. Zbl0103.30202
  11. [Z] J. Zając, The distortion function Φ K and quasihomographies, in: Space Quasiconformal Mappings, A collection of surveys 1960-1990, Springer, to appear 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.