The harmonic and quasiconformal extension operators

Dariusz Partyka; Ken Sakan; Józef Zając

Banach Center Publications (1999)

  • Volume: 48, Issue: 1, page 141-177
  • ISSN: 0137-6934

Abstract

top
Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.

How to cite

top

Partyka, Dariusz, Sakan, Ken, and Zając, Józef. "The harmonic and quasiconformal extension operators." Banach Center Publications 48.1 (1999): 141-177. <http://eudml.org/doc/208949>.

@article{Partyka1999,
abstract = {Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.},
author = {Partyka, Dariusz, Sakan, Ken, Zając, Józef},
journal = {Banach Center Publications},
keywords = {Douady-Earle extension; homeomorphic extension; harmonic extension; universal Teichmüller space; quasiconformal mappings; quasihomographies; Beurling-Ahlfors extension; quasiconformal extension; diffeomorphic extension; quasisymmetric automorphisms; Poisson integral; harmonic mappings; quasisymmetric functions},
language = {eng},
number = {1},
pages = {141-177},
title = {The harmonic and quasiconformal extension operators},
url = {http://eudml.org/doc/208949},
volume = {48},
year = {1999},
}

TY - JOUR
AU - Partyka, Dariusz
AU - Sakan, Ken
AU - Zając, Józef
TI - The harmonic and quasiconformal extension operators
JO - Banach Center Publications
PY - 1999
VL - 48
IS - 1
SP - 141
EP - 177
AB - Different aspects of the boundary value problem for quasiconformal mappings and Teichmüller spaces are expressed in a unified form by the use of the trace and extension operators. Moreover, some new results on harmonic and quasiconformal extensions are included.
LA - eng
KW - Douady-Earle extension; homeomorphic extension; harmonic extension; universal Teichmüller space; quasiconformal mappings; quasihomographies; Beurling-Ahlfors extension; quasiconformal extension; diffeomorphic extension; quasisymmetric automorphisms; Poisson integral; harmonic mappings; quasisymmetric functions
UR - http://eudml.org/doc/208949
ER -

References

top
  1. [AK] S. Agard and J. A. Kelingos, On parametric representation for quasisymmetric functions, Comment. Math. Helv. 44 (1969), 446-456. Zbl0209.11201
  2. [AH1] J. M. Anderson and A. Hinkkanen, Quasiconformal self-mappings with smooth boundary values, Bull. London Math. Soc. 26 (1994), 549-556. Zbl0830.30012
  3. [AH2] J. M. Anderson and A. Hinkkanen, Quadrilaterals and extremal quasiconformal extensions, Comment. Math. Helv. 70, 1995, 455-474. Zbl0839.30017
  4. [Ah] L. V. Ahlfors, Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, 1966. 
  5. [AVV] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Distortion function for plane quasiconformal mappings, Israel J. Math. 62, 1988, 1-16. Zbl0652.30013
  6. [ABR] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Graduate Texts in Math. 137, Springer, New York, 1992. 
  7. [BA] A. Beurling and L. V. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96, 1956, 125-142. Zbl0072.29602
  8. [BH] D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 48, 1994, 12-42. 
  9. [Ca] P. Caraman, n-Dimensional Quasiconformal (QCf) Mappings, Editura Academiei, Bucharest, 1974. 
  10. [Ch] E. W. Chenney, Introduction to approximation theory, McGraw-Hill, New York, 1966. 
  11. [Co] G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. (2), 69, 1945, 156-165. Zbl0063.00851
  12. [DE] A. Douady and C. J. Earle, Conformally natural extension of homeomorphisms of the circle, Acta Math. 157, 1986, 23-48. Zbl0615.30005
  13. [Ea] C. J. Earle, Conformally natural extension of vector fields from S n - 1 to B n , Proc. Amer. Math. Soc. 102, 1988, 145-149. Zbl0646.30026
  14. [Fe1] R. Fehlmann, Ueber extremale quasikonforme Abbildungen, Comment. Math. Helv. 56, 1981, 558-580. Zbl0504.30008
  15. [Fe2] R. Fehlmann, Quasiconformal mappings with free boundary components, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 7, 1982, 337-347. Zbl0487.30008
  16. [FS] R. Fehlmann and K. Sakan, On the set of substantial boundary points for extremal quasiconformal mappings, Complex Variables, Theory Appl. 6, 1986, 323-335. Zbl0624.30028
  17. [GS] F. Gardiner and D. Sullivan, Symmetric structure on a closed curve, Amer. J. Math. 114, 1992, 683-736. Zbl0778.30045
  18. [Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. 
  19. [Ge] F. W. Gehring, Topics in quasiconformal mappings, in: Quasiconformal Space Mappings: a Collection of Surveys 1960-1990, Lecture Notes in Math. 1508, Springer, Berlin, 1992, 20-30. 
  20. [Go] K. P. Goldberg, A new definition for quasisymmetric functions, Michigan Math. J. 21, 1974, 49-62. 
  21. [HH] W. K. Hayman and A. Hinkkanen, Distortion estimates for quasisymmetric functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 36/37, 1982/1983, 51-67. 
  22. [HP] J. Hersch and A. Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234, 1952, 43-45. Zbl0049.06304
  23. [Hi1] A. Hinkkanen, Uniformly quasisymmetric groups, Proc. London Math. Soc. (3), 51, 1985, 318-338. Zbl0574.30022
  24. [Hi2] A. Hinkkanen, The structure of certain quasisymmetric groups, Mem. Amer. Math. Soc. 422 (1986). 
  25. [Hü] O. Hübner, Remarks on a paper by Ławrynowicz on quasiconformal mappings, Bull. Acad. Polon. Sci. 18 , 1970, 183-186. Zbl0195.36501
  26. [KZ] K. Katajamäki and J. Zając, Some remarks on quasisymmetric functions, Bull. Soc. Sci. Lettres, Łódź 15 (141), 1993, 5-13. Zbl0881.30016
  27. [Ke] J. A. Kelingos, Boundary correspondence under quasiconformal mappings, Michigan Math. J. 13, 1966, 235-249. Zbl0146.30702
  28. [Kn] H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math. Verein. 35, 1926, 123-124. 
  29. [Kr1] J. G. Krzyż, Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12, 1987, 19-24. Zbl0563.30016
  30. [Kr2] J. G. Krzyż, Harmonic analysis and boundary correspondence under quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math. 14, 1989, 225-242. Zbl0663.30014
  31. [Kr3] J. G. Krzyż, Quasisymmetric functions and quasihomographies, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47, 1993, 90-95. 
  32. [La] R. S. Laugesen, Planar harmonic maps with inner and Blaschke dilatations, J. London Math. Soc. (to appear). Zbl0892.30017
  33. [LP] A. Lecko and D. Partyka, An alternative proof of a result due to Douady and Earle, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 42, 1988, 59-68. Zbl0712.30040
  34. [Ln1] M. Lehtinen, A real-analytic quasiconformal extension of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. 3, 1977, 207-213. Zbl0395.30010
  35. [Ln2] M. Lehtinen, Remarks on the maximal dilatation of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 9, 1984, 133-139. Zbl0517.30021
  36. [Le] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, New York, 1987 
  37. [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren 126, 2nd., Springer, Berlin, 1973. 
  38. [LVV] O. Lehto, K. I. Virtanen and J. Väisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 273, 1959, 1-14. Zbl0090.05102
  39. [Ł] K ] J. Ławrynowicz and J. G. Krzyż, Quasiconformal Mappings in the Plane: Parametrical Methods, Lecture Notes in Math. 978, Springer, Berlin, 1983. 
  40. [Ma] O. Martio, On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 425, 1968, 1-9. Zbl0162.37902
  41. [Pa1] D. Partyka, The maximal dilatation of Douady and Earle extension of a quasisymmetric automorphism of the unit circle, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 44, 1990, 45-57. Zbl0774.30018
  42. [Pa2] D. Partyka, A distortion theorem for quasiconformal automorphisms of the unit disk, Ann. Polon. Math. 55, 1991, 277-281. Zbl0759.30009
  43. [Pa3] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 45, 1992, 99-111. 
  44. [Pa4] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 18, 1993, 343-354. Zbl0793.30013
  45. [Pa5] D. Partyka, On the maximal dilatation of the Douady-Earle extension, Ann. Univ. Mariae Curie-Skłodowska, Sec. A 48, 1994, 80-97. 
  46. [Pa6] D. Partyka, The maximal value of the function [ 0 , 1 ] r K 2 ( r ) - r , Bull. Soc. Sci. Lettres Łódź 45, 1995, 49-55, Série: Recherches sur les déformations, Vol. 20. Zbl0876.30015
  47. [Pa7] D. Partyka, The generalized Neumann-Poincaré operator and its spectrum, Dissertationes Math. 366 (1997). Zbl0885.30014
  48. [PS1] D. Partyka and K. Sakan, A note on non-quasiconformal harmonic extensions, Bull. Soc. Sci. Lettres Łódź 47, 1997, 51-63, Série: Recherches sur les déformations, Vol. 23. Zbl0940.31001
  49. [PS2] D. Partyka and K. Sakan, Quasiconformality of harmonic extensions, submitted for publication. Zbl0951.30017
  50. [PZ1] D. Partyka and J. Zając, An estimate of the integral of quasisymmetric functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 40, 1986, 171-183. 
  51. [PZ2] D. Partyka and J. Zając, On modification of the Beurling-Ahlfors extension of a quasisymmetric function, Bull. Soc. Sci. Lettres Łódź 40, 1990, 45-52, Série: Recherches sur les déformations, Vol. 15. Zbl0874.30012
  52. [Ra] T. Radó, Aufgabe 41, Jahresber Deutsch. Math.-Verein. 35, 1926, 49. 
  53. [Re] E. Reich, A quasiconformal extension using the parametric representation, J. Analyse Math. 54, 1990, 246-258. Zbl0694.30020
  54. [RC] E. Reich and J. Chen, Extensions with bounded ¯ -derivative, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 16, 1991, 377-389. Zbl0757.30023
  55. [RZ1] L. Resendis and J. Zając, Area and linear distortion theorems for quasiconformal mappings, Bull. Soc. Sci. Lettres Łódź 45, 1995, 51-59, Série: Recherches sur les déformations Vol. 20. Zbl0876.30010
  56. [RZ2] L. Resendis and J. Zając, The Buerling-Ahlfors extension of quasihomographies, Comm. Math. Univ. S. Pauli 46, 1997, 133-174. Zbl0903.30015
  57. [SZ] K. Sakan and J. Zając, The Douady-Earle extension of quasihomographies, Topics in Complex Analysis, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 37, 1996, 43-51. 
  58. [Tu1] P. Tukia, On infinite dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 3, 1977, 343-372. Zbl0391.32014
  59. [Tu2] P. Tukia, Extension of quasisymmetry and Lipschitz embedding of the real line into the plane, Ann. Acad. Sci. Fenn. Ser. A I Math. 6, 1981, 89-94. Zbl0431.30011
  60. [Tu3] P. Tukia, Hausdorff dimension and quasisymmetric mappings, Math. Scand. 65, 1989, 152-160. Zbl0677.30016
  61. [Vä1] J. Väisälä, Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Springer, Berlin, 1971. Zbl0221.30031
  62. [Vä2] J. Väisälä, Free quasiconformality in Banach space, Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 355-379. Zbl0696.30022
  63. [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products, and quasiconformal maps, Preprint, 1992. 
  64. [Ya] S. Yang, Harmonic extensions and extremal quasiconformal extensions, Hunan Univ. J. (to appear). 
  65. [Za1] J. Zając, A new definition of quasisymmetric functions, Mat. Vesnik 40, 1988, 361-365. Zbl0704.30026
  66. [Za2] J. Zając, Quasisymmetric functions and quasihomographies of the unit circle, Ann. Univ. Mariae Curie-Skłodowska Sect. A 44, 1990, 83-95. 
  67. [Za3] J. Zając, Distortion function and quasisymmetric mappings, Ann. Polon. Math. 55, 1991, 361-369. Zbl0757.30032
  68. [Za4] J. Zając, Quasihomographies and the universal Teichmüller space I, Bull. Soc. Sci. Lettres, Łódź 14 (133), 1992, 21-37. Zbl0876.30046
  69. [Za5] J. Zając, Quasihomographies and the universal Teichmüller space II, Bull. Soc. Sci. Lettres, Łódź 18 (137), 1992, 71-92. Zbl0876.30047
  70. [Za6] J. Zając, The distortion function K and quasihomographies, Current topics of analytic function theory, 1992, 403-428. 
  71. [Za7] J. Zając, Functional identities for special functions of quasiconformal theory, Ann. Acad. Sci. Fenn. Ser. A I Math. 18, 1993, 93-103. Zbl0781.30019
  72. [Za8] J. Zając, The boundary correspondence under quasiconformal automorphisms of a Jordan domain, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45, 1991, 131-140. 
  73. [Za9] J. Zając, The universal Teichmüller space of an oriented Jordan curve, Ann. Univ. Mariae Curie-Skłodowska Sect. A 47, 1993, 151-163. 
  74. [Za10] J. Zając, Quasihomographies in the theory of Teichmüller spaces, Dissertationes Math. 357 (1996). 
  75. [Za11] J. Zając, Harmonic cross-ratio in the theory of one and two dimensional quasiconformal mappings, Proc. of the XVI R. Nevanlinna Coll., de Gruyter, Berlin-New York, 321-333. Zbl0865.30026
  76. [ZZ] J. Zając and J. Zając (Jr.), Basic properties of the distance function M K and its extremum, Folia Sci. Univ. Tech. Resoviensis 147, 1996, 157-163. Zbl0882.30013
  77. [Zh] L. Zhong, The lower bound of the maximal dilatation of the Beurling-Ahlfors extension, Ann. Acad. Sci. Fenn. Ser. A I Math. 15, 1990, 75-81. Zbl0723.30016
  78. [Zy] A. Zygmund, Smooth functions, Duke Math. J. 12, 1945, 47-76. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.