Weak and strong topologies and integral equations in Banach spaces

Donal O'Regan

Annales Polonici Mathematici (1995)

  • Volume: 61, Issue: 3, page 245-260
  • ISSN: 0066-2216

Abstract

top
The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel’skiĭ’s fixed point theorem due to Nashed and Wong are used to establish existence of L α and C solutions to Volterra and Hammerstein integral equations in Banach spaces.

How to cite

top

Donal O'Regan. "Weak and strong topologies and integral equations in Banach spaces." Annales Polonici Mathematici 61.3 (1995): 245-260. <http://eudml.org/doc/262401>.

@article{DonalORegan1995,
abstract = {The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel’skiĭ’s fixed point theorem due to Nashed and Wong are used to establish existence of $L^α$ and C solutions to Volterra and Hammerstein integral equations in Banach spaces.},
author = {Donal O'Regan},
journal = {Annales Polonici Mathematici},
keywords = {Volterra; Hammerstein; existence; integral equations in abstract spaces; weak and strong topologies; Volterra integral equation; Hammerstein integral equation; Banach space; Schauder-Tikhonov fixed point theorem; Krasnosel'skij's fixed point theorem},
language = {eng},
number = {3},
pages = {245-260},
title = {Weak and strong topologies and integral equations in Banach spaces},
url = {http://eudml.org/doc/262401},
volume = {61},
year = {1995},
}

TY - JOUR
AU - Donal O'Regan
TI - Weak and strong topologies and integral equations in Banach spaces
JO - Annales Polonici Mathematici
PY - 1995
VL - 61
IS - 3
SP - 245
EP - 260
AB - The Schauder-Tikhonov theorem in locally convex topological spaces and an extension of Krasnosel’skiĭ’s fixed point theorem due to Nashed and Wong are used to establish existence of $L^α$ and C solutions to Volterra and Hammerstein integral equations in Banach spaces.
LA - eng
KW - Volterra; Hammerstein; existence; integral equations in abstract spaces; weak and strong topologies; Volterra integral equation; Hammerstein integral equation; Banach space; Schauder-Tikhonov fixed point theorem; Krasnosel'skij's fixed point theorem
UR - http://eudml.org/doc/262401
ER -

References

top
  1. [1] D. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458-464. Zbl0175.44903
  2. [2] J. K. Brooks and N. Dinculeanu, Weak compactness in spaces of Bochner integrable functions and applications, Adv. in Math. 24 (1977), 172-188. Zbl0354.46026
  3. [3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973. 
  4. [4] C. Corduneanu, Integral Equations and Applications, Cambridge Univ. Press, New York, 1990. 
  5. [5] C. Corduneanu, Perturbations of linear abstract Volterra equations, J. Integral Equations Appl. 2 (1990), 393-401. 
  6. [6] C. Corduneanu, Abstract Volterra equations and weak topologies, in: Delay Differential Equations and Dynamical Systems, S. Busenberg and M. Martelli (eds.), Lecture Notes in Math. 1475, Springer, 110-116. 
  7. [7] J. B. Conway, A Course in Functional Analysis, Springer, Berlin, 1990. Zbl0706.46003
  8. [8] D. G. DeFigueiredo and L. A. Karlovitz, On the radial projection in normed spaces, Bull. Amer. Math. Soc. 73 (1967), 364-368. Zbl0172.16102
  9. [9] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977. 
  10. [10] J. Dugundji and A. Granas, Fixed Point Theory, Monograf. Mat. 61, PWN, Warszawa, 1982. 
  11. [11] N. Dunford and J. T. Schwartz, Linear Operators, Interscience Publ. Inc., Wiley, New York, 1958. 
  12. [12] C. F. Dunkl and K. S. Williams, A simple norm inequality, Amer. Math. Monthly 71 (1964), 53-54. 
  13. [13] G. Gripenberg, S. O. Londen and O. Staffans, Volterra Integral and Functional Equations, Cambridge Univ. Press, New York, 1990. Zbl0695.45002
  14. [14] R. B. Guenther and J. W. Lee, Some existence results for nonlinear integral equations via topological transversality, J. Integral Equations Appl. 5 (1993), 195-209. Zbl0781.45003
  15. [15] R. H. Martin, Jr., Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, 1976. 
  16. [16] M. Z. Nashed and J. S. W. Wong, Some variants of a fixed point theorem of Krasnosel'skiĭ and applications to nonlinear integral equations, J. Math. Mech. 18 (1969), 767-777. Zbl0181.42301
  17. [17] K. Yosida, Functional Analysis, Springer, Berlin, 1971. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.