Page 1 Next

Displaying 1 – 20 of 330

Showing per page

A certain integral-recurrence equation with discrete-continuous auto-convolution

Mircea I. Cîrnu (2011)

Archivum Mathematicum

Laplace transform and some of the author’s previous results about first order differential-recurrence equations with discrete auto-convolution are used to solve a new type of non-linear quadratic integral equation. This paper continues the author’s work from other articles in which are considered and solved new types of algebraic-differential or integral equations.

A general semilocal convergence result for Newton’s method under centered conditions for the second derivative

José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein type.

A general semilocal convergence result for Newton’s method under centered conditions for the second derivative

José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear...

A singular initial value problem for the equation u ( n ) ( x ) = g ( u ( x ) )

Wojciech Mydlarczyk (1998)

Annales Polonici Mathematici

We consider the problem of the existence of positive solutions u to the problem u ( n ) ( x ) = g ( u ( x ) ) , u ( 0 ) = u ' ( 0 ) = . . . = u ( n - 1 ) ( 0 ) = 0 (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition δ 1 / s [ s / g ( s ) ] 1 / n d s < is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.

Currently displaying 1 – 20 of 330

Page 1 Next