Jung's type theorem for polynomial transformations of ℂ²

Sławomir Kołodziej

Annales Polonici Mathematici (1991)

  • Volume: 55, Issue: 1, page 207-212
  • ISSN: 0066-2216

Abstract

top
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form x m y n + terms of degree < m+n.

How to cite

top

Sławomir Kołodziej. "Jung's type theorem for polynomial transformations of ℂ²." Annales Polonici Mathematici 55.1 (1991): 207-212. <http://eudml.org/doc/262440>.

@article{SławomirKołodziej1991,
abstract = {We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form $x^m y^n$ + terms of degree < m+n.},
author = {Sławomir Kołodziej},
journal = {Annales Polonici Mathematici},
keywords = {Jacobian conjecture; birational automorphisms; polynomial automorphism},
language = {eng},
number = {1},
pages = {207-212},
title = {Jung's type theorem for polynomial transformations of ℂ²},
url = {http://eudml.org/doc/262440},
volume = {55},
year = {1991},
}

TY - JOUR
AU - Sławomir Kołodziej
TI - Jung's type theorem for polynomial transformations of ℂ²
JO - Annales Polonici Mathematici
PY - 1991
VL - 55
IS - 1
SP - 207
EP - 212
AB - We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form $x^m y^n$ + terms of degree < m+n.
LA - eng
KW - Jacobian conjecture; birational automorphisms; polynomial automorphism
UR - http://eudml.org/doc/262440
ER -

References

top
  1. [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. Zbl0818.14001
  2. [2] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. Zbl0539.13012
  3. [3] R. C. Heitmann, On the Jacobian Conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. Zbl0704.13010
  4. [4] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. Zbl0027.08503
  5. [5] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306. 
  6. [6] L. G. Makar-Limanov, On automorphisms of the free algebra on two generators, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 107-108 (in Russian). 
  7. [7] K. Rusek, Polynomial automorphisms, preprint 456, IM PAN, 1989. 
  8. [8] A. G. Vitushkin, On polynomial transformations of n , in: Manifolds, Tokyo 1973, Univ. of Tokyo Press, 1975, 415-417. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.