Equivariant maps of joins of finite G-sets and an application to critical point theory
Annales Polonici Mathematici (1992)
- Volume: 56, Issue: 2, page 195-211
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topDanuta Rozpłoch-Nowakowska. "Equivariant maps of joins of finite G-sets and an application to critical point theory." Annales Polonici Mathematici 56.2 (1992): 195-211. <http://eudml.org/doc/262473>.
@article{DanutaRozpłoch1992,
abstract = {A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function $f:S^n → ℝ$, where G is a finite nontrivial group acting freely and orthogonally on $ℝ^\{n+1\} \ \{0\}$. Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk’s Antipodal Theorem for equivariant maps of joins of G-sets.},
author = {Danuta Rozpłoch-Nowakowska},
journal = {Annales Polonici Mathematici},
keywords = {join; group actions; Borsuk's Antipodal Theorem; critical points; -invariant function; number of critical orbits and critical values; Borsuk’s antipodal theorem for equivariant maps of joins of -sets},
language = {eng},
number = {2},
pages = {195-211},
title = {Equivariant maps of joins of finite G-sets and an application to critical point theory},
url = {http://eudml.org/doc/262473},
volume = {56},
year = {1992},
}
TY - JOUR
AU - Danuta Rozpłoch-Nowakowska
TI - Equivariant maps of joins of finite G-sets and an application to critical point theory
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 195
EP - 211
AB - A lower estimate is proved for the number of critical orbits and critical values of a G-invariant C¹ function $f:S^n → ℝ$, where G is a finite nontrivial group acting freely and orthogonally on $ℝ^{n+1} \ {0}$. Neither Morse theory nor the minimax method is applied. The proofs are based on a general version of Borsuk’s Antipodal Theorem for equivariant maps of joins of G-sets.
LA - eng
KW - join; group actions; Borsuk's Antipodal Theorem; critical points; -invariant function; number of critical orbits and critical values; Borsuk’s antipodal theorem for equivariant maps of joins of -sets
UR - http://eudml.org/doc/262473
ER -
References
top- [1] T. Bartsch, Critical orbits of invariant functionals and symmetry breaking, For- schungsschwerpunkt Geometrie, Universität Heidelberg, Heft Nr 34, 1988.
- [2] V. Benci and F. Pacella, Morse theory for symmetric functionals on the sphere and an application to a bifurcation problem, Nonlinear Anal. 9 (1985), 763-771. Zbl0564.58011
- [3] G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972. Zbl0246.57017
- [4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, 1982. Zbl0487.47039
- [5] K. Deimling, Nonlinear Functional Analysis, Springer, 1985.
- [6] E. Fadell and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), 139-174. Zbl0403.57001
- [7] A. Granas and J. Dugundji, Fixed Point Theory, PWN, Warszawa 1982.
- [8] M. Hall, The Theory of Groups, Macmillan, New York 1959.
- [9] W. Krawcewicz and W. Marzantowicz, Lusternik-Schnirelmann method for functionals invariant with respect to a finite group action, preprint, 1988. Zbl0703.58012
- [10] W. Krawcewicz and W. Marzantowicz, Some remarks on the Lusternik-Schnirelmann method for non-differentiable functionals invariant with respect to a finite group action, preprint, 1988. Zbl0728.58005
- [11] J. Milnor, Construction of universal bundles, II, Ann. of Math. 63 (1956), 430-436. Zbl0071.17401
- [12] R. S. Palais, Critical point theory and the minimax principle, in: Proc. Sympos. Pure Math. 15, Amer. Math. Soc., 1970, 185-212. Zbl0212.28902
- [13] R. S. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115-132. Zbl0143.35203
- [14] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1984.
- [15] V. A. Rokhlin and D. B. Fuks, An Introductory Course in Topology. Geometric Chapters, Nauka, Moscow 1977 (in Russian). Zbl0417.55002
- [16] J. A. Wolf, Spaces of Constant Curvature, University of California, Berkeley, Calif., 1972.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.