Analytic cell decomposition of sets definable in the structure e x p

Ta Lê Loi

Annales Polonici Mathematici (1994)

  • Volume: 59, Issue: 3, page 255-266
  • ISSN: 0066-2216

Abstract

top
We prove that every set definable in the structure e x p can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.

How to cite

top

Ta Lê Loi. "Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$." Annales Polonici Mathematici 59.3 (1994): 255-266. <http://eudml.org/doc/262499>.

@article{TaLêLoi1994,
abstract = {We prove that every set definable in the structure $ℝ_\{exp\}$ can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.},
author = {Ta Lê Loi},
journal = {Annales Polonici Mathematici},
keywords = {𝒟-sets; Wilkie's Theorem; semianalytic sets; analytic cell decomposition; Tarski's system; Tarski system},
language = {eng},
number = {3},
pages = {255-266},
title = {Analytic cell decomposition of sets definable in the structure $ℝ_\{exp\}$},
url = {http://eudml.org/doc/262499},
volume = {59},
year = {1994},
}

TY - JOUR
AU - Ta Lê Loi
TI - Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 3
SP - 255
EP - 266
AB - We prove that every set definable in the structure $ℝ_{exp}$ can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.
LA - eng
KW - 𝒟-sets; Wilkie's Theorem; semianalytic sets; analytic cell decomposition; Tarski's system; Tarski system
UR - http://eudml.org/doc/262499
ER -

References

top
  1. [1] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
  2. [2] L. van den Dries, Tame topology and O-minimal structures, mimeographed notes, 1991. 
  3. [3] L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19-56. Zbl0823.03017
  4. [4] A. G. Khovanskiĭ, On a class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804-807 (in Russian). 
  5. [5] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991. 
  6. [6] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605. Zbl0662.03024
  7. [7] T. L. Loi, C k -regular points of sets definable in the structure e x p , preprint, 1992. 
  8. [8] S. Łojasiewicz, Ensembles Semi-Analytiques, mimeographed notes, I.H.E.S., Bures-sur-Yvette, 1965. 
  9. [9] J. C. Tougeron, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII, 1986. 
  10. [10] J. C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskiĭ, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 823-840. 
  11. [11] A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991. 
  12. [12] A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.