Analytic cell decomposition of sets definable in the structure
Annales Polonici Mathematici (1994)
- Volume: 59, Issue: 3, page 255-266
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topTa Lê Loi. "Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$." Annales Polonici Mathematici 59.3 (1994): 255-266. <http://eudml.org/doc/262499>.
@article{TaLêLoi1994,
abstract = {We prove that every set definable in the structure $ℝ_\{exp\}$ can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.},
author = {Ta Lê Loi},
journal = {Annales Polonici Mathematici},
keywords = {𝒟-sets; Wilkie's Theorem; semianalytic sets; analytic cell decomposition; Tarski's system; Tarski system},
language = {eng},
number = {3},
pages = {255-266},
title = {Analytic cell decomposition of sets definable in the structure $ℝ_\{exp\}$},
url = {http://eudml.org/doc/262499},
volume = {59},
year = {1994},
}
TY - JOUR
AU - Ta Lê Loi
TI - Analytic cell decomposition of sets definable in the structure $ℝ_{exp}$
JO - Annales Polonici Mathematici
PY - 1994
VL - 59
IS - 3
SP - 255
EP - 266
AB - We prove that every set definable in the structure $ℝ_{exp}$ can be decomposed into finitely many connected analytic manifolds each of which is also definable in this structure.
LA - eng
KW - 𝒟-sets; Wilkie's Theorem; semianalytic sets; analytic cell decomposition; Tarski's system; Tarski system
UR - http://eudml.org/doc/262499
ER -
References
top- [1] Z. Denkowska, S. Łojasiewicz and J. Stasica, Certaines propriétés élémentaires des ensembles sous-analytiques, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 529-536. Zbl0435.32006
- [2] L. van den Dries, Tame topology and O-minimal structures, mimeographed notes, 1991.
- [3] L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math. 85 (1994), 19-56. Zbl0823.03017
- [4] A. G. Khovanskiĭ, On a class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), 804-807 (in Russian).
- [5] A. G. Khovanskiĭ, Fewnomials, Transl. Math. Monographs 88, Amer. Math. Soc., 1991.
- [6] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures. II, Trans. Amer. Math. Soc. 295 (1986), 593-605. Zbl0662.03024
- [7] T. L. Loi, -regular points of sets definable in the structure , preprint, 1992.
- [8] S. Łojasiewicz, Ensembles Semi-Analytiques, mimeographed notes, I.H.E.S., Bures-sur-Yvette, 1965.
- [9] J. C. Tougeron, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII, 1986.
- [10] J. C. Tougeron, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskiĭ, Ann. Inst. Fourier (Grenoble) 41 (4) (1991), 823-840.
- [11] A. J. Wilkie, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, 1991.
- [12] A. J. Wilkie, Model completeness results for expansions of the real field II: The exponential function, manuscript, 1991.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.