Łojasiewicz inequalities for sets definable in the structure exp

Ta Lê Loi

Annales de l'institut Fourier (1995)

  • Volume: 45, Issue: 4, page 951-971
  • ISSN: 0373-0956

Abstract

top
We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.

How to cite

top

Ta Lê Loi. "Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$." Annales de l'institut Fourier 45.4 (1995): 951-971. <http://eudml.org/doc/75152>.

@article{TaLêLoi1995,
abstract = {We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.},
author = {Ta Lê Loi},
journal = {Annales de l'institut Fourier},
keywords = {Łojasiewicz inequalities; Łojasiewicz exponents},
language = {eng},
number = {4},
pages = {951-971},
publisher = {Association des Annales de l'Institut Fourier},
title = {Łojasiewicz inequalities for sets definable in the structure $\{\mathbb \{R\}\}_\{\{\rm exp\}\}$},
url = {http://eudml.org/doc/75152},
volume = {45},
year = {1995},
}

TY - JOUR
AU - Ta Lê Loi
TI - Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 951
EP - 971
AB - We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.
LA - eng
KW - Łojasiewicz inequalities; Łojasiewicz exponents
UR - http://eudml.org/doc/75152
ER -

References

top
  1. [1]E. BIERSTONE, Differential functions, Bol. Soc. Bras. Math., vol. 11, n° 2 (1980), 139-190. Zbl0584.58006MR83k:58012
  2. [2]J. BOCHNAK & J. J. RISLER, Sur les exposants de Łojasiewicz, Comment. Math. Helv., 50 (1975), 493-507. Zbl0321.32006MR53 #8474
  3. [3]L. VAN DEN DRIES, Tame topology and 0-minimal structures, mimeographed notes (1991). Zbl0953.03045
  4. [4]L. VAN DEN DRIES & C. MILLER, The field of reals with restricted analytic functions and unrestricted exponentiation : model completeness, 0-minimality, analytic cell decomposition and growth of definable functions, Israel J. Math., 85 (1994), 19-56. Zbl0823.03017MR95e:03099
  5. [5]A. FEKAK, Sur les exposants de Łojasiewicz, Thèse, Rennes (1986). 
  6. [6]A. G. KHOVANSKII, On the class of system of transcendental equations, Dokl, Akad. Nauk. SSSR, 255, n° 4 (1980), 804-807 (Russian). Zbl0569.32004
  7. [7]A. G. KHOVANSKII, Fewnomials, Transl. Math. Monographs AMS, vol. 88 (1991). Zbl0728.12002
  8. [8]J. KNIGHT, A. PILLAY & C. STEINHORN, Definable sets in ordered structures II, Trans. AMS, 295 (1986), 593-605. Zbl0662.03024MR88b:03050b
  9. [9]T. L. LOI, Analytic cell decomposition of sets definable in the structure ℝexp, Ann. Pol. Math., LIX3 (1994), 255-266. Zbl0806.32001
  10. [10]T. L. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmico-exponential functions, C. R. Acad. Sci. Paris, t. 318, Série I (1994), 543-548. Zbl0804.32008MR95c:32007
  11. [11]T. L. LOI, Thesis, Krakow (1993). 
  12. [12]S. ŁOJASIEWICZ, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette (1965). 
  13. [13]B. MALGRANGE, Ideals of differentiable functions, Oxford Univ. Press, London, 1966. Zbl0177.17902
  14. [14]M. ROSENLICHT, The rank of a Hardy field, Trans. AMS, 280 (1983), 659-671. Zbl0536.12015MR85d:12002
  15. [15]J. C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin, 1972. Zbl0251.58001MR55 #13472
  16. [16]J. C. TOUGERON, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII (1986). Zbl0634.14017MR89b:32016
  17. [17]J. C. TOUGERON, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 823-840. Zbl0786.32011MR93f:32005
  18. [18]J. C. TOUGERON, Inégalités de Łojasiewicz globales, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 841-865. Zbl0748.32007MR93f:32006
  19. [19]A. J. WILKIE, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, Oxford (1991). 
  20. [20]A. J. WILKIE, Model completeness results for expansions of the real field II : the exponential function, manuscript, Oxford (1991). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.