Łojasiewicz inequalities for sets definable in the structure
Annales de l'institut Fourier (1995)
- Volume: 45, Issue: 4, page 951-971
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topTa Lê Loi. "Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$." Annales de l'institut Fourier 45.4 (1995): 951-971. <http://eudml.org/doc/75152>.
@article{TaLêLoi1995,
abstract = {We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.},
author = {Ta Lê Loi},
journal = {Annales de l'institut Fourier},
keywords = {Łojasiewicz inequalities; Łojasiewicz exponents},
language = {eng},
number = {4},
pages = {951-971},
publisher = {Association des Annales de l'Institut Fourier},
title = {Łojasiewicz inequalities for sets definable in the structure $\{\mathbb \{R\}\}_\{\{\rm exp\}\}$},
url = {http://eudml.org/doc/75152},
volume = {45},
year = {1995},
}
TY - JOUR
AU - Ta Lê Loi
TI - Łojasiewicz inequalities for sets definable in the structure ${\mathbb {R}}_{{\rm exp}}$
JO - Annales de l'institut Fourier
PY - 1995
PB - Association des Annales de l'Institut Fourier
VL - 45
IS - 4
SP - 951
EP - 971
AB - We consider some variants of Łojasiewicz inequalities for the class of subsets of Euclidean spaces definable from addition, multiplication and exponentiation : Łojasiewicz-type inequalities, global Łojasiewicz inequalities with or without parameters. The rationality of Łojasiewicz’s exponents for this class is also proved.
LA - eng
KW - Łojasiewicz inequalities; Łojasiewicz exponents
UR - http://eudml.org/doc/75152
ER -
References
top- [1]E. BIERSTONE, Differential functions, Bol. Soc. Bras. Math., vol. 11, n° 2 (1980), 139-190. Zbl0584.58006MR83k:58012
- [2]J. BOCHNAK & J. J. RISLER, Sur les exposants de Łojasiewicz, Comment. Math. Helv., 50 (1975), 493-507. Zbl0321.32006MR53 #8474
- [3]L. VAN DEN DRIES, Tame topology and 0-minimal structures, mimeographed notes (1991). Zbl0953.03045
- [4]L. VAN DEN DRIES & C. MILLER, The field of reals with restricted analytic functions and unrestricted exponentiation : model completeness, 0-minimality, analytic cell decomposition and growth of definable functions, Israel J. Math., 85 (1994), 19-56. Zbl0823.03017MR95e:03099
- [5]A. FEKAK, Sur les exposants de Łojasiewicz, Thèse, Rennes (1986).
- [6]A. G. KHOVANSKII, On the class of system of transcendental equations, Dokl, Akad. Nauk. SSSR, 255, n° 4 (1980), 804-807 (Russian). Zbl0569.32004
- [7]A. G. KHOVANSKII, Fewnomials, Transl. Math. Monographs AMS, vol. 88 (1991). Zbl0728.12002
- [8]J. KNIGHT, A. PILLAY & C. STEINHORN, Definable sets in ordered structures II, Trans. AMS, 295 (1986), 593-605. Zbl0662.03024MR88b:03050b
- [9]T. L. LOI, Analytic cell decomposition of sets definable in the structure ℝexp, Ann. Pol. Math., LIX3 (1994), 255-266. Zbl0806.32001
- [10]T. L. LOI, On the global Łojasiewicz inequalities for the class of analytic logarithmico-exponential functions, C. R. Acad. Sci. Paris, t. 318, Série I (1994), 543-548. Zbl0804.32008MR95c:32007
- [11]T. L. LOI, Thesis, Krakow (1993).
- [12]S. ŁOJASIEWICZ, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette (1965).
- [13]B. MALGRANGE, Ideals of differentiable functions, Oxford Univ. Press, London, 1966. Zbl0177.17902
- [14]M. ROSENLICHT, The rank of a Hardy field, Trans. AMS, 280 (1983), 659-671. Zbl0536.12015MR85d:12002
- [15]J. C. TOUGERON, Idéaux de fonctions différentiables, Springer, Berlin, 1972. Zbl0251.58001MR55 #13472
- [16]J. C. TOUGERON, Sur certaines algèbres de fonctions analytiques, Séminaire de géométrie algébrique réelle, Paris VII (1986). Zbl0634.14017MR89b:32016
- [17]J. C. TOUGERON, Algèbres analytiques topologiquement noethériennes. Théorie de Khovanskii, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 823-840. Zbl0786.32011MR93f:32005
- [18]J. C. TOUGERON, Inégalités de Łojasiewicz globales, Ann. Inst. Fourier, Grenoble, 41-4 (1991), 841-865. Zbl0748.32007MR93f:32006
- [19]A. J. WILKIE, Some model completeness results for expansions of the ordered field of real numbers by Pfaffian functions, preprint, Oxford (1991).
- [20]A. J. WILKIE, Model completeness results for expansions of the real field II : the exponential function, manuscript, Oxford (1991).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.