The graph of a totally geodesic foliation

Robert A. Wolak

Annales Polonici Mathematici (1995)

  • Volume: 60, Issue: 3, page 241-247
  • ISSN: 0066-2216

Abstract

top
We study the properties of the graph of a totally geodesic foliation. We limit our considerations to basic properties of the graph, and from them we derive several interesting corollaries on the structure of leaves.

How to cite

top

Robert A. Wolak. "The graph of a totally geodesic foliation." Annales Polonici Mathematici 60.3 (1995): 241-247. <http://eudml.org/doc/262505>.

@article{RobertA1995,
abstract = {We study the properties of the graph of a totally geodesic foliation. We limit our considerations to basic properties of the graph, and from them we derive several interesting corollaries on the structure of leaves.},
author = {Robert A. Wolak},
journal = {Annales Polonici Mathematici},
keywords = {foliation; totally geodesic; graph; totally geodesic foliation},
language = {eng},
number = {3},
pages = {241-247},
title = {The graph of a totally geodesic foliation},
url = {http://eudml.org/doc/262505},
volume = {60},
year = {1995},
}

TY - JOUR
AU - Robert A. Wolak
TI - The graph of a totally geodesic foliation
JO - Annales Polonici Mathematici
PY - 1995
VL - 60
IS - 3
SP - 241
EP - 247
AB - We study the properties of the graph of a totally geodesic foliation. We limit our considerations to basic properties of the graph, and from them we derive several interesting corollaries on the structure of leaves.
LA - eng
KW - foliation; totally geodesic; graph; totally geodesic foliation
UR - http://eudml.org/doc/262505
ER -

References

top
  1. [1] R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorem for foliated manifolds, Ann. Inst. Fourier (Grenoble) 33 (1983), 183-198. Zbl0487.57010
  2. [2] R. A. Blumenthal and J. J. Hebda, Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations, Quart. J. Math. Oxford 35 (1984), 383-392. Zbl0572.57016
  3. [3] R. A. Blumenthal and J. J. Hebda, Ehresmann connections for foliations, Indiana Univ. Math. J. 33 (1984), 597-611. Zbl0511.57021
  4. [4] G. Cairns, Feuilletages géodésiques, thèse, Université du Languedoc, Montpellier, 1987. 
  5. [5] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Parts A and B, Vieweg, Braunschweig, 1981, 1983. Zbl0486.57002
  6. [6] D. L. Johnson and L. B. Whitt, Totally geodesic foliations, J. Differential Geom. 15 (1980), 225-235. Zbl0444.57017
  7. [7] J. Plante, Foliations with measure preserving holonomy, Ann. of Math. 102 (1975), 327-361. Zbl0314.57018
  8. [8] H. Winkelnkemper, The graph of a foliation, Ann. Global Anal. Geom. 1 (1983), 51-75. Zbl0526.53039
  9. [9] H. Winkelnkemper, The number of ends of the universal leaf of a Riemannian foliation, in: Differential Geometry, Proc., Special Year, Maryland 1981-82, R. Brooks (ed.), Birkhäuser, 1983, 247-254. 
  10. [10] R. A. Wolak, Foliations admitting transverse systems of differential equations, Compositio Math. 67 (1988), 89-101. Zbl0649.57027
  11. [11] R. A. Wolak, Le graphe d'un feuilletage admettant un système d'équations différentielles, Math. Z. 201 (1989), 177-182. Zbl0645.57022
  12. [12] R. A. Wolak, Geometric Structures on Foliated Manifolds, Universidad de Santiago de Compostela, 1989 Zbl0838.53029
  13. [0] P. Dazord et G. Hector, Intégration symplectique des variétés de Poisson totalement asphériques, in: Symplectic Geometry, Groupoids and Integrable Systems, MSRI Lecture Notes 20, 1991, 37-72 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.