De Rham decomposition theorems for foliated manifolds

Robert A. Blumenthal; James J. Hebda

Annales de l'institut Fourier (1983)

  • Volume: 33, Issue: 2, page 183-198
  • ISSN: 0373-0956

Abstract

top
We prove that if M is a complete simply connected Riemannian manifold and F is a totally geodesic foliation of M with integrable normal bundle, then M is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.

How to cite

top

Blumenthal, Robert A., and Hebda, James J.. "De Rham decomposition theorems for foliated manifolds." Annales de l'institut Fourier 33.2 (1983): 183-198. <http://eudml.org/doc/74583>.

@article{Blumenthal1983,
abstract = {We prove that if $M$ is a complete simply connected Riemannian manifold and $F$ is a totally geodesic foliation of $M$ with integrable normal bundle, then $M$ is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.},
author = {Blumenthal, Robert A., Hebda, James J.},
journal = {Annales de l'institut Fourier},
keywords = {totally geodesic foliation with integrable normal bundle; product foliations; decomposition theorem for Riemannian foliations},
language = {eng},
number = {2},
pages = {183-198},
publisher = {Association des Annales de l'Institut Fourier},
title = {De Rham decomposition theorems for foliated manifolds},
url = {http://eudml.org/doc/74583},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Blumenthal, Robert A.
AU - Hebda, James J.
TI - De Rham decomposition theorems for foliated manifolds
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 183
EP - 198
AB - We prove that if $M$ is a complete simply connected Riemannian manifold and $F$ is a totally geodesic foliation of $M$ with integrable normal bundle, then $M$ is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.
LA - eng
KW - totally geodesic foliation with integrable normal bundle; product foliations; decomposition theorem for Riemannian foliations
UR - http://eudml.org/doc/74583
ER -

References

top
  1. [1] R. A. BLUMENTHAL, Transversely homogeneous foliations, Annales Inst. Fourier, 29 (1979), 143-158. Zbl0405.57016MR81h:57011
  2. [2] R. A. BLUMENTHAL, Riemannian homogeneous foliations without holonomy, Nagoya Math. J., 83 (1981), 197-201. Zbl0427.57008MR82m:57013
  3. [3] R. A. BLUMENTHAL, Riemannian foliations with parallel curvature, Nagoya Math. J. (to appear). Zbl0508.57020
  4. [4] R. BOTT, Lectures on characteristic classes and foliations (notes by L. Conlon), Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, 1-80. Zbl0241.57010MR50 #14777
  5. [5] Y. CARRIERE and E. GHYS, Feuilletages totalement géodésiques, An. Acad. Brasil, Ciênc., 53 (1981), 427-432. Zbl0486.57013MR83m:57019
  6. [6] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Pisa, 16 (1962), 367-397. Zbl0122.40702MR32 #6487
  7. [7] R. HERMANN, On the differential geometry of foliations, Annals of Math., 72 (1960), 445-457. Zbl0196.54204MR25 #5523
  8. [8] R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., 11 (1960), 236-242. Zbl0112.13701MR22 #3006
  9. [9] D. JOHNSON and L. WHITT, Totally geodesic foliations on 3-manifolds, Proc. Amer. Math. Soc., 76 (1979), 355-357. Zbl0388.57015MR81d:57020
  10. [10] D. JOHNSON and L. WHITT, Totally geodesic foliations, Journal of Diff. Geom., 15 (1980), 225-235. Zbl0444.57017MR83h:57037
  11. [11] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963. Zbl0119.37502
  12. [12] C. LAZAROV and J. PASTERNAK, Secondary characteristic classes for Riemannian foliations, Journal of Diff. Geom., 11 (1976), 365-385. Zbl0356.57007MR56 #3853
  13. [13] P. MOLINO, Etude des feuilletages transversalement complets et applications, Ann. Scient. Ec. Norm. Sup., 10 (1977), 289-307. Zbl0368.57007MR56 #16649
  14. [14] J. F. PLANTE, Foliations with measure preserving holonomy, Annals of Math., 102 (1975), 327-361. Zbl0314.57018MR52 #11947
  15. [15] J. F. PLANTE, Measure preserving pseudogroups and a theorem of Sacksteder, Annales Inst. Fourier, 25, 1 (1975), 237-249. Zbl0299.58007MR51 #14100
  16. [16] B. REINHART, Foliated manifolds with bundle-like metrics, Annals of Math., 69 (1959), 119-132. Zbl0122.16604MR21 #6004
  17. [17] G. DE RHAM, Sur la réductibilité d'un espace de Riemann, Comm. Math. Helv., 26 (1952), 328-344. Zbl0048.15701MR14,584a
  18. [18] R. SACKSTEDER, Foliations and pseudogroups, Amer. J. of Math., 87 (1965), 79-102. Zbl0136.20903MR30 #4268
  19. [19] D. TISCHLER, On fibering certain foliated manifolds over S1, Topology, 9 (1970), 153-154. Zbl0177.52103MR41 #1069

NotesEmbed ?

top

You must be logged in to post comments.