De Rham decomposition theorems for foliated manifolds
Robert A. Blumenthal; James J. Hebda
Annales de l'institut Fourier (1983)
- Volume: 33, Issue: 2, page 183-198
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBlumenthal, Robert A., and Hebda, James J.. "De Rham decomposition theorems for foliated manifolds." Annales de l'institut Fourier 33.2 (1983): 183-198. <http://eudml.org/doc/74583>.
@article{Blumenthal1983,
abstract = {We prove that if $M$ is a complete simply connected Riemannian manifold and $F$ is a totally geodesic foliation of $M$ with integrable normal bundle, then $M$ is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.},
author = {Blumenthal, Robert A., Hebda, James J.},
journal = {Annales de l'institut Fourier},
keywords = {totally geodesic foliation with integrable normal bundle; product foliations; decomposition theorem for Riemannian foliations},
language = {eng},
number = {2},
pages = {183-198},
publisher = {Association des Annales de l'Institut Fourier},
title = {De Rham decomposition theorems for foliated manifolds},
url = {http://eudml.org/doc/74583},
volume = {33},
year = {1983},
}
TY - JOUR
AU - Blumenthal, Robert A.
AU - Hebda, James J.
TI - De Rham decomposition theorems for foliated manifolds
JO - Annales de l'institut Fourier
PY - 1983
PB - Association des Annales de l'Institut Fourier
VL - 33
IS - 2
SP - 183
EP - 198
AB - We prove that if $M$ is a complete simply connected Riemannian manifold and $F$ is a totally geodesic foliation of $M$ with integrable normal bundle, then $M$ is topologically a product and the two foliations are the product foliations. We also prove a decomposition theorem for Riemannian foliations and a structure theorem for Riemannian foliations with recurrent curvature.
LA - eng
KW - totally geodesic foliation with integrable normal bundle; product foliations; decomposition theorem for Riemannian foliations
UR - http://eudml.org/doc/74583
ER -
References
top- [1] R. A. BLUMENTHAL, Transversely homogeneous foliations, Annales Inst. Fourier, 29 (1979), 143-158. Zbl0405.57016MR81h:57011
- [2] R. A. BLUMENTHAL, Riemannian homogeneous foliations without holonomy, Nagoya Math. J., 83 (1981), 197-201. Zbl0427.57008MR82m:57013
- [3] R. A. BLUMENTHAL, Riemannian foliations with parallel curvature, Nagoya Math. J. (to appear). Zbl0508.57020
- [4] R. BOTT, Lectures on characteristic classes and foliations (notes by L. Conlon), Lecture Notes in Math., no. 279, Springer-Verlag, New York, 1972, 1-80. Zbl0241.57010MR50 #14777
- [5] Y. CARRIERE and E. GHYS, Feuilletages totalement géodésiques, An. Acad. Brasil, Ciênc., 53 (1981), 427-432. Zbl0486.57013MR83m:57019
- [6] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Pisa, 16 (1962), 367-397. Zbl0122.40702MR32 #6487
- [7] R. HERMANN, On the differential geometry of foliations, Annals of Math., 72 (1960), 445-457. Zbl0196.54204MR25 #5523
- [8] R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., 11 (1960), 236-242. Zbl0112.13701MR22 #3006
- [9] D. JOHNSON and L. WHITT, Totally geodesic foliations on 3-manifolds, Proc. Amer. Math. Soc., 76 (1979), 355-357. Zbl0388.57015MR81d:57020
- [10] D. JOHNSON and L. WHITT, Totally geodesic foliations, Journal of Diff. Geom., 15 (1980), 225-235. Zbl0444.57017MR83h:57037
- [11] S. KOBAYASHI and K. NOMIZU, Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963. Zbl0119.37502
- [12] C. LAZAROV and J. PASTERNAK, Secondary characteristic classes for Riemannian foliations, Journal of Diff. Geom., 11 (1976), 365-385. Zbl0356.57007MR56 #3853
- [13] P. MOLINO, Etude des feuilletages transversalement complets et applications, Ann. Scient. Ec. Norm. Sup., 10 (1977), 289-307. Zbl0368.57007MR56 #16649
- [14] J. F. PLANTE, Foliations with measure preserving holonomy, Annals of Math., 102 (1975), 327-361. Zbl0314.57018MR52 #11947
- [15] J. F. PLANTE, Measure preserving pseudogroups and a theorem of Sacksteder, Annales Inst. Fourier, 25, 1 (1975), 237-249. Zbl0299.58007MR51 #14100
- [16] B. REINHART, Foliated manifolds with bundle-like metrics, Annals of Math., 69 (1959), 119-132. Zbl0122.16604MR21 #6004
- [17] G. DE RHAM, Sur la réductibilité d'un espace de Riemann, Comm. Math. Helv., 26 (1952), 328-344. Zbl0048.15701MR14,584a
- [18] R. SACKSTEDER, Foliations and pseudogroups, Amer. J. of Math., 87 (1965), 79-102. Zbl0136.20903MR30 #4268
- [19] D. TISCHLER, On fibering certain foliated manifolds over S1, Topology, 9 (1970), 153-154. Zbl0177.52103MR41 #1069
Citations in EuDML Documents
top- H. Boualem, Feuilletages riemanniens singuliers transversalement intégrables
- Robert Wolak, Foliations admitting transverse systems of differential equations
- Robert A. Wolak, The graph of a totally geodesic foliation
- Pierre Molino, M. Pierrot, Théorèmes de slice et holonomie des feuilletages riemanniens singuliers
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.