Classical solutions of hyperbolic partial differential equations with implicit mixed derivative
Annales Polonici Mathematici (1992)
- Volume: 56, Issue: 2, page 163-178
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math. 60, Marcel Dekker, 1980. Zbl0441.47056
- [2] J. Bryszewski, L. Górniewicz and T. Pruszko, An application of the topological degree theory to the study of the Darboux problem for hyperbolic equations, J. Math. Anal. Appl. 76 (1980), 107-115. Zbl0452.35074
- [3] G. Emmanuele and B. Ricceri, Sull'esistenza delle soluzioni delle equazioni differenziali ordinarie in forma implicita negli spazi di Banach, Ann. Mat. Pura Appl. (4) 129 (1981), 367-382. Zbl0499.34039
- [4] P. Hartman and A. Wintner, On hyperbolic partial differential equations, Amer. J. Math. 74 (1952), 834-864. Zbl0048.33302
- [5] B. Rzepecki, On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces, Rend. Sem. Mat. Univ. Padova 76 (1986), 201-206. Zbl0656.35087
- [6] G. Vidossich, Hyperbolic equations as ordinary differential equations in Banach space, preprint S.I.S.S.A. Zbl0789.35114