On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces
Rendiconti del Seminario Matematico della Università di Padova (1986)
- Volume: 76, page 201-206
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRzepecki, Bogdan. "On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 201-206. <http://eudml.org/doc/108041>.
@article{Rzepecki1986,
author = {Rzepecki, Bogdan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {existence; Darboux problem; Banach space; measure of noncompactness; Lipschitz condition},
language = {eng},
pages = {201-206},
publisher = {Seminario Matematico of the University of Padua},
title = {On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces},
url = {http://eudml.org/doc/108041},
volume = {76},
year = {1986},
}
TY - JOUR
AU - Rzepecki, Bogdan
TI - On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 201
EP - 206
LA - eng
KW - existence; Darboux problem; Banach space; measure of noncompactness; Lipschitz condition
UR - http://eudml.org/doc/108041
ER -
References
top- [1] S. Abian - A.B. Brown, On the solution of simultaneous first order implicit differential equations, Math. Annalen, 137 (1959), pp. 9-16. Zbl0088.29201MR104005
- [2] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), pp. 349-360. Zbl0174.46001MR222426
- [3] J. Banas - K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Applied Math., 60, Marcel Dekker, New York, 1980. Zbl0441.47056MR591679
- [4] R. Conti, Sulla risoluzione dell'equazione F(t, x, dx/dt) = 0, Annali di Mat. Pura ed Appl., 48 (1959), pp. 97-102. Zbl0092.07704MR110838
- [5] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
- [6] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math., 596, Springer-Verlag, Berlin, 1977. Zbl0361.34050MR463601
- [7] K. Goebel - W. Rzymowski, An existence theorem for the equations x' = f (t, x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 18 (1970), pp. 367-370. Zbl0202.10003MR269957
- [8] R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976. Zbl0333.47023MR492671
- [9] P. Negrini, Sul problema di Darboux negli spazi di Banach, Bollettino U.M.I., (5), 17-A (1980), pp. 156-160. Zbl0545.35071
- [10] G. Pulvirenti, Equazioni differenziali in forma implicita in uno spazio di Banach, Annali di Mat. Pura ed Appl., 56 (1961), pp. 177-191. Zbl0106.09701MR133553
- [11] B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Sci. Math., 27 (1979), pp. 473-479. Zbl0435.47057MR560183
- [12] B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys, 27 (1972), pp. 86-144. Zbl0243.47033MR428132
Citations in EuDML Documents
top- Salvatore A. Marano, Classical solutions of hyperbolic partial differential equations with implicit mixed derivative
- Antoni Sadowski, On the Picard problem for hyperbolic differential equations in Banach spaces
- Adrian Karpowicz, The existence of Carathéodory solutions of hyperbolic functional differential equations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.