On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

Bogdan Rzepecki

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 201-206
  • ISSN: 0041-8994

How to cite

top

Rzepecki, Bogdan. "On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 201-206. <http://eudml.org/doc/108041>.

@article{Rzepecki1986,
author = {Rzepecki, Bogdan},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {existence; Darboux problem; Banach space; measure of noncompactness; Lipschitz condition},
language = {eng},
pages = {201-206},
publisher = {Seminario Matematico of the University of Padua},
title = {On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces},
url = {http://eudml.org/doc/108041},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Rzepecki, Bogdan
TI - On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 201
EP - 206
LA - eng
KW - existence; Darboux problem; Banach space; measure of noncompactness; Lipschitz condition
UR - http://eudml.org/doc/108041
ER -

References

top
  1. [1] S. Abian - A.B. Brown, On the solution of simultaneous first order implicit differential equations, Math. Annalen, 137 (1959), pp. 9-16. Zbl0088.29201MR104005
  2. [2] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Mat. Univ. Padova, 39 (1967), pp. 349-360. Zbl0174.46001MR222426
  3. [3] J. Banas - K. Goebel, Measures of Noncompactness in Banach Spaces, Lect. Notes Pure Applied Math., 60, Marcel Dekker, New York, 1980. Zbl0441.47056MR591679
  4. [4] R. Conti, Sulla risoluzione dell'equazione F(t, x, dx/dt) = 0, Annali di Mat. Pura ed Appl., 48 (1959), pp. 97-102. Zbl0092.07704MR110838
  5. [5] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92. Zbl0064.35704MR70164
  6. [6] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lect. Notes in Math., 596, Springer-Verlag, Berlin, 1977. Zbl0361.34050MR463601
  7. [7] K. Goebel - W. Rzymowski, An existence theorem for the equations x' = f (t, x) in Banach space, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys., 18 (1970), pp. 367-370. Zbl0202.10003MR269957
  8. [8] R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley and Sons, New York, 1976. Zbl0333.47023MR492671
  9. [9] P. Negrini, Sul problema di Darboux negli spazi di Banach, Bollettino U.M.I., (5), 17-A (1980), pp. 156-160. Zbl0545.35071
  10. [10] G. Pulvirenti, Equazioni differenziali in forma implicita in uno spazio di Banach, Annali di Mat. Pura ed Appl., 56 (1961), pp. 177-191. Zbl0106.09701MR133553
  11. [11] B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Acad. Polon. Sci., Sér. Sci. Math., 27 (1979), pp. 473-479. Zbl0435.47057MR560183
  12. [12] B.N. Sadovskii, Limit compact and condensing operators, Russian Math. Surveys, 27 (1972), pp. 86-144. Zbl0243.47033MR428132

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.