On the density of extremal solutions of differential inclusions

F. S. De Blasi; G. Pianigiani

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 133-142
  • ISSN: 0066-2216

Abstract

top
An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].

How to cite

top

F. S. De Blasi, and G. Pianigiani. "On the density of extremal solutions of differential inclusions." Annales Polonici Mathematici 56.2 (1992): 133-142. <http://eudml.org/doc/262527>.

@article{F1992,
abstract = {An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].},
author = {F. S. De Blasi, G. Pianigiani},
journal = {Annales Polonici Mathematici},
keywords = {differential inclusions; extremal solutions; Choquet function; Banach space; Baire-category theorem},
language = {eng},
number = {2},
pages = {133-142},
title = {On the density of extremal solutions of differential inclusions},
url = {http://eudml.org/doc/262527},
volume = {56},
year = {1992},
}

TY - JOUR
AU - F. S. De Blasi
AU - G. Pianigiani
TI - On the density of extremal solutions of differential inclusions
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 133
EP - 142
AB - An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].
LA - eng
KW - differential inclusions; extremal solutions; Choquet function; Banach space; Baire-category theorem
UR - http://eudml.org/doc/262527
ER -

References

top
  1. [1] A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398. 
  2. [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984. Zbl0538.34007
  3. [3] S. Bahi, Quelques propriétés topologiques de l'ensemble des solutions d'une classe d'équations différentielles multivoques (II), Séminaire d'Analyse Convexe, Montpellier, 1983, exposé No. 4. 
  4. [4] A. Bressan and G. Colombo, Generalized Baire category and differential inclusions in Banach spaces, J. Differential Equations 76 (1988), 135-158. Zbl0655.34013
  5. [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin 1977. 
  6. [6] G. Choquet, Lectures on Analysis, Benjamin, Reading 1969. 
  7. [7] P. V. Chuong, Un résultat d'existence de solutions pour des équations différentielles multivoques, C. R. Acad. Sci. Paris 301 (1985), 399-402. Zbl0581.34012
  8. [8] F. S. De Blasi and G. Pianigiani, A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. (2) 25 (1982), 153-162. Zbl0535.34009
  9. [9] F. S. De Blasi and G. Pianigiani, The Baire category method in existence problems for a class of multivalued differential equations with nonconvex right hand side, Funkcial. Ekvac. 28 (1985), 139-156. Zbl0584.34007
  10. [10] F. S. De Blasi and G. Pianigiani, Differential inclusions in Banach spaces, J. Differential Equations 66 (1987), 208-229. Zbl0609.34013
  11. [11] A. F. Filippov, The existence of solutions of generalized differential equations, Math. Notes 10 (1971), 608-611. Zbl0265.34074
  12. [12] A. N. Godunov, Peano's theorem in Banach spaces, Funktsional. Anal. i Prilozhen. 9 (1) (1974), 59-60 (in Russian). 
  13. [13] H. Kaczyński and C. Olech, Existence of solutions of orientor fields with nonconvex right hand side, Ann. Polon. Math. 29 (1974), 61-66. Zbl0285.34008
  14. [14] N. S. Papageorgiou, On the solution set of differential inclusions in Banach spaces, Appl. Anal. 25 (1987), 319-329. Zbl0623.34062
  15. [15] N. S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437-464. Zbl0634.28005
  16. [16] G. Pianigiani, On the fundamental theory of multivalued differential equations, J. Differential Equations 25 (1977), 30-38. Zbl0398.34017
  17. [17] A. A. Tolstonogov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 20 (1979), 186-190. Zbl0439.34052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.