Extremal solutions and strong relaxation for second order multivalued boundary value problems
Leszek Gasiński; Nikolaos S. Papageorgiou
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 827-844
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGasiński, Leszek, and Papageorgiou, Nikolaos S.. "Extremal solutions and strong relaxation for second order multivalued boundary value problems." Czechoslovak Mathematical Journal 55.4 (2005): 827-844. <http://eudml.org/doc/30992>.
@article{Gasiński2005,
abstract = {In this paper we study semilinear second order differential inclusions involving a multivalued maximal monotone operator. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain “extremal” solutions and we prove a strong relaxation theorem.},
author = {Gasiński, Leszek, Papageorgiou, Nikolaos S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {maximal monotone operator; pseudomonotone operator; Hartman condition; convex and nonconvex problems; extremal solutions; strong relaxation; maximal monotone operator; pseudomonotone operator; Hartman condition; convex and nonconvex problems},
language = {eng},
number = {4},
pages = {827-844},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremal solutions and strong relaxation for second order multivalued boundary value problems},
url = {http://eudml.org/doc/30992},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Gasiński, Leszek
AU - Papageorgiou, Nikolaos S.
TI - Extremal solutions and strong relaxation for second order multivalued boundary value problems
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 827
EP - 844
AB - In this paper we study semilinear second order differential inclusions involving a multivalued maximal monotone operator. Using notions and techniques from the nonlinear operator theory and from multivalued analysis, we obtain “extremal” solutions and we prove a strong relaxation theorem.
LA - eng
KW - maximal monotone operator; pseudomonotone operator; Hartman condition; convex and nonconvex problems; extremal solutions; strong relaxation; maximal monotone operator; pseudomonotone operator; Hartman condition; convex and nonconvex problems
UR - http://eudml.org/doc/30992
ER -
References
top- 10.1016/0362-546X(86)90091-X, Nonlin. Anal. 10 (1986), 1083–1103. (1986) MR0857742DOI10.1016/0362-546X(86)90091-X
- 10.1006/jmaa.1996.0066, J. Math. Anal. Appl. 198 (1996), 35–48. (1996) MR1373525DOI10.1006/jmaa.1996.0066
- 10.1016/S0362-546X(98)00044-3, Nonlin. Anal. 37 (1999), 217–245. (1999) MR1689752DOI10.1016/S0362-546X(98)00044-3
- The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side, Funkcialaj Ekvacioj 28 (1985), 139–156. (1985) MR0816823
- 10.1016/0022-247X(91)90101-5, J. Math. Anal. Appl. 157 (1991), 469–494. (1991) MR1112329DOI10.1016/0022-247X(91)90101-5
- On the density of extremal solutions of differential inclusions, Annales Polon. Math. LVI (1992), 133–142. (1992) MR1159984
- 10.1016/0362-546X(93)90075-4, Nonlin. Anal. 20 (1993), 871–894. (1993) MR1214750DOI10.1016/0362-546X(93)90075-4
- 10.1016/0362-546X(94)90245-3, Nonlin. Anal. 23 (1994), 669–681. (1994) Zbl0813.34021MR1297285DOI10.1016/0362-546X(94)90245-3
- Nonlinear boundary value problems for differential inclusions , Annales Polon. Math. LIV (1991), 195–226. (1991) MR1114171
- Theoremes d’existence des solutions d’inclusion differentielles, In: NATO ASI Series, Section C, 472, Kluwer, Dordrecht, 1995, pp. 51–87. (1995) MR1368670
- Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math. 568, Springer-Verlag, New York, 1977. (1977) MR0637067
- Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman and Hall/CRC Press, Boca Raton, 2005. (2005) MR2092433
- Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integ. Eqns. 6 (1993), 705–719. (1993) Zbl0784.34018
- 10.1006/jdeq.1998.3439, J. Differ. Equations 147 (1998), 123–154. (1998) MR1632661DOI10.1006/jdeq.1998.3439
- 10.1090/S0002-9947-1960-0124553-5, Trans. AMS 96 (1960), 493–509. (1960) Zbl0098.06101MR0124553DOI10.1090/S0002-9947-1960-0124553-5
- Ordinary Differential Equations, Willey, New York, 1964. (1964) Zbl0125.32102MR0171038
- Periodic solutions for nonconvex differential inclusions, Proc. AMS 127 (1999), 89–94. (1999) MR1451808
- On the existence of periodic solutions for nonconvex-valued differential inclusions in , Proc. AMS 123 (1995), 3043–3050. (1995) MR1301503
- Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, 1997. (1997) MR1485775
- Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, 2000. (2000) MR1741926
- 10.1006/jdeq.1996.0173, J. Differ. Equations 132 (1996), 107–125. (1996) MR1418502DOI10.1006/jdeq.1996.0173
- Neumann problem for a class of quasilinear differential equations, Atti. Sem. Mat. Fisico Univ. di Modena 48 (2000), 163–177. (2000) MR1767378
- On the existence of periodic solutions for second order vector differential equations, J. Differ. Equations 9 (1971), 67–85. (1971) Zbl0211.11801MR0277824
- 10.1007/BF00251378, Arch. Rational Mech. Anal. 45 (1972), 294–320. (1972) MR0338765DOI10.1007/BF00251378
- 10.1016/S0362-546X(00)85028-2, Nonlin. Anal. 40 (2000), 497–503. (2000) Zbl0959.34014MR1768905DOI10.1016/S0362-546X(00)85028-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.