Analytic hypoellipticity for sums of squares of vector fields

A. Alexandrou Himonas

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 117-129
  • ISSN: 0066-2216

Abstract

top
We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.

How to cite

top

A. Alexandrou Himonas. "Analytic hypoellipticity for sums of squares of vector fields." Annales Polonici Mathematici 70.1 (1998): 117-129. <http://eudml.org/doc/262561>.

@article{A1998,
abstract = {We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.},
author = {A. Alexandrou Himonas},
journal = {Annales Polonici Mathematici},
keywords = {analytic hypoellipticity; sum of squares of vector fields; eigenvalue; bracket condition; characteristic set; symplectic; torus; up to date review of the status of the theory},
language = {eng},
number = {1},
pages = {117-129},
title = {Analytic hypoellipticity for sums of squares of vector fields},
url = {http://eudml.org/doc/262561},
volume = {70},
year = {1998},
}

TY - JOUR
AU - A. Alexandrou Himonas
TI - Analytic hypoellipticity for sums of squares of vector fields
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 117
EP - 129
AB - We discuss the open problem of analytic hypoellipticity for sums of squares of vector fields, including some recent partial results and a conjecture of Treves.
LA - eng
KW - analytic hypoellipticity; sum of squares of vector fields; eigenvalue; bracket condition; characteristic set; symplectic; torus; up to date review of the status of the theory
UR - http://eudml.org/doc/262561
ER -

References

top
  1. [BG] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483-486. Zbl0276.35023
  2. [BM] D. R. Bell and S. A. Mohammed, An extension of Hörmander's theorem for infinitely degenerate second-order operators, Duke Math. J. 78 (1995), 453-475. Zbl0840.60053
  3. [BT] L. Boutet de Monvel and F. Treves, On a class of pseudo-differential operators with double characteristics, Invent. Math. 24 (1974), 1-34. Zbl0281.35083
  4. [BTa1] A. Bove and D. S. Tartakoff, Optimal non-isotropic Gevrey exponents for sums of squares of vector fields, Comm. Partial Differential Equations 22 (1997), 1263-1282. Zbl0921.35043
  5. [BTa2] A. Bove and D. S. Tartakoff, On a conjecture of Treves: Analytic hypoellipticity and Poisson strata, preprint, 1997. 
  6. [C] S. C. Chen, Global analytic hypoellipticity of the ∂̅-Neumann problem on circular domains, Invent. Math. 92 (1988), 173-185. Zbl0621.35067
  7. [Ch1] M. Christ, A class of hypoelliptic PDE admitting nonanalytic solutions, in: Contemp. Math. 137, Amer. Math. Soc., 1992, 155-167. 
  8. [Ch2] M. Christ, A necessary condition for analytic hypoellipticity, Math. Res. Lett. 1 (1994), 241-248. Zbl0841.35026
  9. [Ch3] M. Christ, Global analytic hypoellipticity in the presence of symmetry, ibid., 559-563. Zbl0841.35027
  10. [Ch4] M. Christ, A progress report on analytic hypoellipticity, in: Geometric Complex Analysis, J. Noguchi (ed.), World Sci., 1996, 123-146. Zbl0924.47029
  11. [Ch5] M. Christ, Intermediate optimal Gevrey exponents occur, Comm. Partial Differential Equations 22 (1997), 359-379. Zbl0893.35021
  12. [CH1] P. D. Cordaro and A. A. Himonas, Global analytic hypoellipticity for a class of degenerate elliptic operators on the torus, Math. Res. Lett. 1 (1994), 501-510. Zbl0836.35036
  13. [CH2] P. D. Cordaro and A. A. Himonas, Global analytic hypoellipticity for sums of squares of vector fields, Trans. Amer. Math. Soc., to appear. Zbl0914.35087
  14. [D] M. Derridj, Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 99-148. Zbl0215.45405
  15. [DT] M. Derridj and D. S. Tartakoff, Global analyticity for b on three dimensional CR manifolds, Comm. Partial Differential Equations 18 (1993), 1847-1868. Zbl0791.35087
  16. [DZ] M. Derridj et C. Zuily, Régularité analytique et Gevrey d'opérateurs elliptiques dégénérés, J. Math. Pures Appl. 52 (1973), 65-80. Zbl0263.35020
  17. [F] V. S. Fediĭ, Estimates in H ( s ) norms and hypoellipticity, Dokl. Akad. Nauk SSSR 193 (1970), 301-303 (in Russian). 
  18. [G] A. Gilioli, A class of second-order evolution equations with double characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), 187-229. Zbl0327.35018
  19. [GT] A. Gilioli and F. Treves, An example in the solvability theory of linear PDE's, Amer. J. Math. 96 (1974), 367-385. Zbl0308.35022
  20. [GR] A. Grigis and L. P. Rothschild, A criterion for analytic hypoellipticity of a class of differential operators with polynomial coefficients, Ann. of Math. 118 (1983), 443-460. Zbl0541.35017
  21. [GS] A. Grigis et J. Sjöstrand, Front d'onde analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35-51. Zbl0581.35009
  22. [GW] S. J. Greenfield and N. R. Wallach, Global hypoelliptic and Liouville numbers, Proc. Amer. Math. Soc. 31 (1972), 112-114. 
  23. [Gr] V. V. Grushin, On a class of hypoelliptic operators, Mat. Sb. 83 (1970), 456-473 (in Russian). 
  24. [HH1] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. Partial Differential Equations 16 (1991), 1503-1511. Zbl0745.35011
  25. [HH2] N. Hanges and A. A. Himonas, Analytic hypoellipticity for generalized Baouendi Goulaouic operators, J. Funct. Anal. 125 (1994), 309-325. Zbl0812.35026
  26. [HH3] N. Hanges and A. A. Himonas, Singular solutions for a class of Grusin type operators, Proc. Amer. Math. Soc. 124 (1996), 1549-1557. Zbl0858.35025
  27. [HH4] N. Hanges and A. A. Himonas, Non-analytic hypoellipticity in the presence of symplecticity, ibid. 126 (1998), 405-409. 
  28. [He] B. Helffer, Conditions nécessaires d'hypoanalyticité pour des opérateurs invariants à gauche homogènes sur un groupe nilpotent gradué, J. Differential Equations 44 (1982), 460-481. Zbl0458.35019
  29. [Ho] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. Zbl0156.10701
  30. [K] J. J. Kohn, Pseudo-differential operators and hypoellipticity, in: Proc. Sympos. Pure Math. 23, Amer. Math. Soc., 1973, 61-70. Zbl0262.35007
  31. [Ko] G. Komatsu, Global analytic hypoellipticity of the ∂̅-Neumann problem, Tôhoku Math. J. 28 (1976), 145-156. Zbl0319.35056
  32. [KS] S. Kusuoka and D. Strook, Applications of the Malliavin calculus, Part II, J. Fac. Sci. Tokyo Sect. IA Math. 32 (1985), 1-76. 
  33. [Kw] K. H. Kwon, Concatenations applied to analytic hypoellipticity of operators with double characteristics, Trans. Amer. Math. Soc., 283 (1984), 753-763. Zbl0542.35024
  34. [M] T. Matsuzawa, Sur les équations u t t + t α u x x = f ( α 0 ) , Nagoya Math. J. 42 (1971), 43-55. 
  35. [Me] A. Menikoff, Some examples of hypoelliptic partial differential equations, Math. Ann. 221 (1976), 167-181. Zbl0323.35019
  36. [Met1] G. Métivier, Analytic hypoellipticity for operators with multiple characteristics, Comm. Partial Differential Equations 1 (1981), 1-90. Zbl0455.35040
  37. [Met2] G. Métivier, Une classe d'opérateurs non hypoelliptiques analytiques, Indiana Univ. Math. J. 29 (1980), 823-860. Zbl0455.35041
  38. [OR1] O. A. Oleĭnik and E. V. Radkevich, On the analyticity of solutions of linear differential equations and systems, Dokl. Akad. Nauk SSSR 207 (1972), 1614-1618 (in Russian). Zbl0266.35001
  39. [OR2] O. A. Oleĭnik and E. V. Radkevich, Second Order Equations with Nonnegative Characteristic Form, Amer. Math. Soc. and Plenum Press, 1973. 
  40. [PR] Pham The Lai et D. Robert, Sur un problème aux valeurs propres non linéaire, Israel J. Math. 36 (1980), 169-186. Zbl0444.35065
  41. [RS] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1977), 247-320. Zbl0346.35030
  42. [S] J. Sjöstrand, Analytic wavefront sets and operators with multiple characteristics, Hokkaido Math. J. 12 (1983), 392-433. Zbl0531.35022
  43. [St] E. M. Stein, An example on the Heisenberg group related to the Lewy operator, Invent. Math. 69 (1982), 209-216. Zbl0515.58032
  44. [Ta1] D. S. Tartakoff, On the local real analyticity of solutions to b and the ∂̅-Neumann problem, Acta Math. 145 (1980), 117-204. 
  45. [Ta2] D. S. Tartakoff, On the global real analyticity of solutions to b on compact manifolds, Comm. Partial Differential Equations 1 (1976), 283-311. 
  46. [Ta3] D. S. Tartakoff, Global (and local) analyticity for second order orerators constructed from rigid vector fields on products of tori, Trans. Amer. Math. Soc. 348 (1996), 2577-2583. Zbl0863.58063
  47. [Tr1] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂̅-Neumann problem, Comm. Partial Differential Equations 3 (1978), 475-642. Zbl0384.35055
  48. [Tr2] F. Treves, Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 26 (1973), 201-250. Zbl0266.35060
  49. [Tr3] F. Treves, Symplectic geometry and analytic hypo-ellipticity, preprint, 1996. 

NotesEmbed ?

top

You must be logged in to post comments.