Weak products of universal algebras

Ildikó Sain

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 311-318
  • ISSN: 0137-6934

Abstract

top
Weak direct products of arbitrary universal algebras are introduced. The usual notion for groups and rings is a special case. Some universal algebraic properties are proved and applications to cylindric and polyadic algebras are considered.

How to cite

top

Sain, Ildikó. "Weak products of universal algebras." Banach Center Publications 28.1 (1993): 311-318. <http://eudml.org/doc/262581>.

@article{Sain1993,
abstract = {Weak direct products of arbitrary universal algebras are introduced. The usual notion for groups and rings is a special case. Some universal algebraic properties are proved and applications to cylindric and polyadic algebras are considered.},
author = {Sain, Ildikó},
journal = {Banach Center Publications},
keywords = {universal algebra; algebraic logic; cylindric algebras; weak direct products; polyadic algebras; vector spaces; equational classes},
language = {eng},
number = {1},
pages = {311-318},
title = {Weak products of universal algebras},
url = {http://eudml.org/doc/262581},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Sain, Ildikó
TI - Weak products of universal algebras
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 311
EP - 318
AB - Weak direct products of arbitrary universal algebras are introduced. The usual notion for groups and rings is a special case. Some universal algebraic properties are proved and applications to cylindric and polyadic algebras are considered.
LA - eng
KW - universal algebra; algebraic logic; cylindric algebras; weak direct products; polyadic algebras; vector spaces; equational classes
UR - http://eudml.org/doc/262581
ER -

References

top
  1. [1] H. Andréka, T. Gergely and I. Németi, Purely algebraic construction of first order logics, preprint of Central Research Institute of Hung. Acad. Sci., Budapest, No. KFKI-73-71 (1973), 46 pp. 
  2. [2] H. Andréka, T. Gergely and I. Németi, On universal algebraic construction of logics, Studia Logica 36 (1-2) (1977), 9-47. Zbl0362.02057
  3. [3] H. Andréka and I. Németi, A simple, purely algebraic proof of the completeness of some first order logics, Algebra Universalis 5 (1975), 8-15. 
  4. [4] H. Andréka and I. Németi, Formulas and ultraproducts in categories, Beiträge Algebra Geom. 8 (1979), 133-151. 
  5. [5] M. A. Arbib and E. G. Manes, Arrows, Structures and Functors: The Categorial Imperative, Academic Press, 1975. 
  6. [6] E. K. Van Deuven, J. D. Monk and R. Matatyahu, Some questions about Boolean algebras, preprint, Univ. of Colorado, Boulder, Co., 1979. 
  7. [7] S. Eilenberg and M. P. Schützenberger, On pseudovarieties, Adv. in Math. 19 (3) (1976), 413-418. Zbl0351.20035
  8. [8] L. Fuchs, Infinite Abelian Groups, Academic Press, 1970. Zbl0209.05503
  9. [9] S. Givant, The structure of relation algebras generated by relativizations, preprint, Dept. of Math., Mills College, Oakland, Cal., 1991, 152 pp. 
  10. [10] G. Grätzer, Universal Algebra, second ed., Springer, Berlin 1979. 
  11. [11] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, North-Holland, Amsterdam 1971 and 1985. 
  12. [12] L. Henkin, J. D. Monk, A. Tarski, H. Andréka and I. Németi, Cylindric Set Algebras, Lecture Notes in Math. 883, Springer, Berlin 1981. Zbl0497.03025
  13. [13] I. Malcev, Algebraic Systems, Akademie-Verlag, Berlin 1973. 
  14. [14] J. D. Monk, Mathematical Logic, Graduate Texts in Math. 37, Springer, Berlin 1978. 
  15. [15] J. D. Monk, On depth of Boolean algebras, lecture at the Math. Inst. Hungar. Acad. Sci., Budapest, December 1978. 
  16. [16] J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras, I-II-III, North-Holland, Amsterdam 1989. 
  17. [17] I. Németi, Connections between cylindric algebras and initial algebra semantics of CF languages, in: Mathematical Logic in Computer Science (Proc. Coll. Salgótarján 1978), B. Dömölki and T. Gergely (eds.), Colloq. Math. Soc. J. Bolyai 26, North-Holland, Amsterdam 1981, 561-605. 
  18. [18] I. Németi and I. Sain, Cone-implicational subcategories and some Birkhoff-type theorems, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982, 535-578. Zbl0495.18001
  19. [19] D. Pigozzi, On some operations on classes of algebras, Algebra Universalis 2 (1972), 346-353. Zbl0272.08006
  20. [20] J. Rosický, Concerning equational categories, in: Universal Algebra (Proc. Coll. Esztergom 1977), Colloq. Math. Soc. J. Bolyai 29, North-Holland, Amsterdam 1982. 
  21. [21] I. Sain, Weak products for universal algebra and model theory, Diagrammes 8 (1982), S1-S15. Zbl0525.08002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.