What the finitization problem is not

A. Simon

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 95-116
  • ISSN: 0137-6934

How to cite

top

Simon, A.. "What the finitization problem is not." Banach Center Publications 28.1 (1993): 95-116. <http://eudml.org/doc/262586>.

@article{Simon1993,
author = {Simon, A.},
journal = {Banach Center Publications},
keywords = {algebraization of first-order logic; cylindric algebra; finitely based equational class},
language = {eng},
number = {1},
pages = {95-116},
title = {What the finitization problem is not},
url = {http://eudml.org/doc/262586},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Simon, A.
TI - What the finitization problem is not
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 95
EP - 116
LA - eng
KW - algebraization of first-order logic; cylindric algebra; finitely based equational class
UR - http://eudml.org/doc/262586
ER -

References

top
  1. [A91] H. Andréka, Complexity of the equations valid in algebras of relations, thesis for D.Sc. (a post-habilitation degree), Hungar. Acad. Sci., Budapest 1991. 
  2. [AMN] H. Andréka, J. D. Monk and I. Németi (eds.), Algebraic Logic (Proc. Conf. Budapest 1988), Colloq. Math. Soc. János Bolyai 54, North-Holland, Amsterdam 1991. 
  3. [ANS] H. Andréka, I. Németi and I. Sain, Abstract model-theoretic approach to algebraic logic, manuscript, 1984. 
  4. [BF] J. Barwise and S. Feferman (eds.), Model-Theoretic Logics, Springer, Berlin 1985. 
  5. [BMP] C. H. Bergman, R. D. Maddux and D. L. Pigozzi (eds.), Algebraic Logic and Universal Algebra in Computer Science, Lecture Notes in Comput. Sci. 425, Springer, Berlin 1990. 
  6. [BP] W. J. Blok and D. Pigozzi, Algebraizable logics, Mem. Amer. Math. Soc. 396 (1989). Zbl0664.03042
  7. [B86] P. Burmeister, A model-theoretic oriented approach to partial algebras, Akademie-Verlag, Berlin 1986. 
  8. [BS] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York 1981. 
  9. [CV] W. Craig and R. L. Vaught, Finite axiomatizability using additional predicates, J. Symbolic Logic 23 (3) (1958), 289-308. Zbl0085.24601
  10. [D] M. Davis, Unsolvable Problems, in: Handbook of Mathematical Logic, J. Barwise (ed.), North-Holland, Amsterdam 1977, 567-594. 
  11. [H] L. Henkin, The representation theorem for cylindric algebras, in: Mathematical Interpretations of Formal Systems, North-Holland, Amsterdam 1955, 85-97. 
  12. [HM] L. Henkin and J. D. Monk, Cylindric algebras and related structures, in: Proceedings of the Tarski Symposium, Amer. Math. Soc., 1974, 105-121. Zbl0307.02041
  13. [HMT] L. Henkin, J. D. Monk and A. Tarski, Cylindric Algebras, Parts I, II, North-Holland, Amsterdam 1971, 1985. 
  14. [M] R. Maddux, Finitary algebraic logic, Z. Math. Logik Grundlag. Math. 35 (1989), 321-332. Zbl0661.03052
  15. [M70] J. D. Monk, On an algebra of sets of finite sequences, J. Symbolic Logic 35 (1970), 19-28. Zbl0196.01001
  16. [MLn] J. D. Monk, Lectures on cylindric set algebras, this volume. 
  17. [N89] I. Németi, On cylindric algebraic model theory, in [BMP], 37-75. Zbl0793.03073
  18. [N91] I. Németi, Algebraization of quantifier logics: an introductory overview, Studia Logica 4 (1991), in press. Zbl0772.03033
  19. [S87] I. Sain, Searching for a finitizable algebraization of first order logic, submitted, 1987. 
  20. [S87a] I. Sain, Positive results related to the Jónsson, Tarski-Givant representation problem, preprint, Math. Inst. Hungar. Acad. Sci., Oct. 1987. 
  21. [ST] I. Sain and R. J. Thompson, Strictly finite schema axiomatization of quasi-polyadic algebras, in [AMN], 539-571. Zbl0751.03033
  22. [S90] A. Simon, A complete calculus for type-free logic and representable cylindric algebras, preprint, Math. Inst. Hungar. Acad. Sci. 
  23. [S91] A. Simon, Finite schema completeness for typeless logic and representable cylindric algebras, in [AMN], 665-670. Zbl0751.03035
  24. [TG] A. Tarski and S. Givant, A Formalization of Set Theory without Variables, Colloq. Publ. 41, Amer. Math. Soc., 1986. 
  25. [VH] P. A. S. Veloso and A. M. Haeberer, A finitary relational algebra for classical first order logic, preprint, Rio de Janeiro; abstracted in: Bull. Section of Logic 20 (2) (1991), 52-62. Zbl0745.03057
  26. [ [V90] Y. Venema, Cylindric modal logic, submitted to J. Symbolic Logic. Zbl1284.03153
  27. [V92] Y. Venema, Many-dimensional modal logic, Ph.D. thesis, Univ. of Amsterdam, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.