A finitely Axiomatizable complete theory with atomless F1 (T).
In this paper we present a very general deduction theorem which -based upon a uniform notion of proof from hypotheses- holds for a very large class of logical systems. Most of the known results for classical and modal logics, as well as new results, are immediate corollaries of this theorem.
Continuing the study of different types of Abstract Logics [5], and following works by Brown-Bloom [1] and Brown-Suszko [2], we analyze in this paper some logics in which, if we identify equivalent formulae by means of the consequence operator, we obtain distributive lattices or Boolean algebras.
We describe restricted and extended versions of the logic of approximation which is meant to handle formally the problems of measurement error and of deduction under conditions of uncertainty. We apply the logic to the foundations of social and behavioral inquiry, axiomatizing in it an inexact similarity predicate which behaves like a metric approximation to identity. In the restricted version of the logic we formulate conditions for the imbeddability of similarity models in the real line, and in...