# Entropy conditions and their numerical analogues for conservation laws

Banach Center Publications (1994)

- Volume: 29, Issue: 1, page 51-63
- ISSN: 0137-6934

## Access Full Article

top## How to cite

topAnsorge, R.. "Entropy conditions and their numerical analogues for conservation laws." Banach Center Publications 29.1 (1994): 51-63. <http://eudml.org/doc/262601>.

@article{Ansorge1994,

author = {Ansorge, R.},

journal = {Banach Center Publications},

keywords = {entropy conditions; conservation laws; flow problems; weak solutions; consistency; difference method; Lax-Wendroff method; monotone method; total variance diminishing method; TVD method},

language = {eng},

number = {1},

pages = {51-63},

title = {Entropy conditions and their numerical analogues for conservation laws},

url = {http://eudml.org/doc/262601},

volume = {29},

year = {1994},

}

TY - JOUR

AU - Ansorge, R.

TI - Entropy conditions and their numerical analogues for conservation laws

JO - Banach Center Publications

PY - 1994

VL - 29

IS - 1

SP - 51

EP - 63

LA - eng

KW - entropy conditions; conservation laws; flow problems; weak solutions; consistency; difference method; Lax-Wendroff method; monotone method; total variance diminishing method; TVD method

UR - http://eudml.org/doc/262601

ER -

## References

top- [1] R. Courant, K. O. Friedrichs und H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), 32-74. Zbl54.0486.01
- [2] R. Courant, E. Isaacson and M. Rees, On the solution of nonlinear hyperbolic differential equations by finite differences, Comm. Pure. Appl. Math. 5 (1952), 243-255. Zbl0047.11704
- [3] B. Engquist and S. Osher, Stable and entropy satisfying approximations for transonic flow calculations, Math. Comp. 34 (1980), 45-75. Zbl0438.76051
- [4] A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comput. Phys. 49 (1983), 357-393. Zbl0565.65050
- [5] A. Harten, J. M. Hyman and P. D. Lax, On finite-difference approximations and entropy conditions for shocks, Comm. Pure Appl. Math. 29 (1976), 297-322 (with appendix by Barbara Keyfitz). Zbl0351.76070
- [6] S. N. Kružkov, Generalized solutions of the Cauchy problem in the large for nonlinear equations of first order, Soviet Math. Dokl. 10 (1969), 785-788.
- [7] P. D. Lax, Weak solutions of nonlinear hyperbolic equations and their numerical computation, Comm. Pure Appl. Math. 7 (1954), 159-193. Zbl0055.19404
- [8] P. D. Lax, Shock waves and entropy, in: Contributions to Nonlinear Functional Analysis, E. Zarantello (ed.), Academic Press, New York 1971, 603-634.
- [9] P. D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, SIAM Regional Conference Series in Applied Mathematics 11 (1972), 48 pp.
- [10] P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math. 13 (1960), 217-237. Zbl0152.44802
- [11] O. Oleĭnik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. Ser. 2 26 (1957), 95-172.
- [12] S. Reuter, Die diskrete Entropiebedingung bei der numerischen Lösung skalarer Erhaltungsgleichungen, Diploma Thesis, Hamburg 1991.
- [13] K. G. Strack, Discrete entropy condition and stability for conservation laws, Reports Inst. für Geom. und Prakt. Math., RWTH Aachen 30 (1985).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.