Controllability of right invariant systems on semi-simple Lie groups

R. El Assoudi; J. Gauthier; I. Kupka

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 199-208
  • ISSN: 0137-6934

Abstract

top
We deal with controllability of right invariant control systems on semi-simple Lie groups. We recall the history of the problem and the successive results. We state the final complete result, with a sketch of proof.

How to cite

top

El Assoudi, R., Gauthier, J., and Kupka, I.. "Controllability of right invariant systems on semi-simple Lie groups." Banach Center Publications 32.1 (1995): 199-208. <http://eudml.org/doc/262629>.

@article{ElAssoudi1995,
abstract = {We deal with controllability of right invariant control systems on semi-simple Lie groups. We recall the history of the problem and the successive results. We state the final complete result, with a sketch of proof.},
author = {El Assoudi, R., Gauthier, J., Kupka, I.},
journal = {Banach Center Publications},
keywords = {invariant vector fields; controllability; root systems; semi-simple Lie algebras; Lie saturate; rank condition; right invariant; Lie group},
language = {eng},
number = {1},
pages = {199-208},
title = {Controllability of right invariant systems on semi-simple Lie groups},
url = {http://eudml.org/doc/262629},
volume = {32},
year = {1995},
}

TY - JOUR
AU - El Assoudi, R.
AU - Gauthier, J.
AU - Kupka, I.
TI - Controllability of right invariant systems on semi-simple Lie groups
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 199
EP - 208
AB - We deal with controllability of right invariant control systems on semi-simple Lie groups. We recall the history of the problem and the successive results. We state the final complete result, with a sketch of proof.
LA - eng
KW - invariant vector fields; controllability; root systems; semi-simple Lie algebras; Lie saturate; rank condition; right invariant; Lie group
UR - http://eudml.org/doc/262629
ER -

References

top
  1. [B] N. Bourbaki, Groupes et algèbres de Lie, Fasc. XXXVIII, chap. 7-8, Hermann, Paris, 1975. Zbl0329.17002
  2. [BJKS] B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Transitivity of families of invariant vector fields on the semi-direct products of Lie groups, Trans. Amer. Math. Soc. 271 (1982), 525-535. Zbl0519.49023
  3. [EA] R. El Assoudi, Accessibilité par des champs de vecteurs invariants à droite sur un groupe de Lie, Thèse de doctorat de l'Université Joseph Fourier, Grenoble, 1991. 
  4. [EAG] R. El Assoudi and J. P. Gauthier, Controllability of right invariant systems on real simple Lie groups of type F 4 , G 2 , B n and C n , Math. Control Signals Systems 1 (1988), 293-301. 
  5. [EAGK] R. El Assoudi, J. P. Gauthier and I. Kupka, Controllability of right invariant systems on semi-simple Lie groups, Ann. Inst. Henri Poincaré, to appear. Zbl0839.93019
  6. [GB] J. P. Gauthier et G. Bornard, Controllabilité des systèmes bilinéaires, SIAM J. Control Optim. 20 (1982), 377-384. Zbl0579.93005
  7. [GKS] J. P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real simple Lie groups, Systems Control Letters 5 (1984), 187-190. Zbl0552.93010
  8. [H] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962. Zbl0111.18101
  9. [HHL] J. Hilgert, K. Hoffman and J. D. Lawson, Controllability of systems on a nilpotent Lie group, Beitr. Algebra Geom. 30 (1985), 185-190. 
  10. [HI] J. Hilgert, Max. semigroups and controllability in products of Lie groups, Arch. Math. (Basel) 49 (1987), 189-195. Zbl0649.22003
  11. [J] A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), 1-29. Zbl0346.17008
  12. [JK] V. Jurdjevic and I. Kupka, Controllability of right invariant systems on semi-simple Lie groups and their homogeneous spaces, Ann. Inst. Fourier (Grenoble) 31 (4) (1981), 151-179. Zbl0453.93011
  13. [L] J. D. Lawson, Maximal subsemigroups of Lie groups that are total, Proc. Edinburgh Math. Soc. 30 (1987), 479-501. Zbl0649.22004
  14. [LC] F. S. Leite and P. E. Crouch, Controllability on classical Lie groups, Math. Control Signals Systems 1, 1988, 31-42. Zbl0658.93013
  15. [W] G. Warner, Harmonic Analysis on Semi-simple Lie Groups 1, Springer, Berlin, 1972. Zbl0265.22020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.