An estimation of the controllability time for single-input systems on compact Lie Groups

Andrei Agrachev; Thomas Chambrion

ESAIM: Control, Optimisation and Calculus of Variations (2006)

  • Volume: 12, Issue: 3, page 409-441
  • ISSN: 1292-8119

Abstract

top
Geometric control theory and Riemannian techniques are used to describe the reachable set at time t of left invariant single-input control systems on semi-simple compact Lie groups and to estimate the minimal time needed to reach any point from identity. This method provides an effective way to give an upper and a lower bound for the minimal time needed to transfer a controlled quantum system with a drift from a given initial position to a given final position. The bounds include diameters of the flag manifolds; the latter are also explicitly computed in the paper.

How to cite

top

Agrachev, Andrei, and Chambrion, Thomas. "An estimation of the controllability time for single-input systems on compact Lie Groups." ESAIM: Control, Optimisation and Calculus of Variations 12.3 (2006): 409-441. <http://eudml.org/doc/249680>.

@article{Agrachev2006,
abstract = { Geometric control theory and Riemannian techniques are used to describe the reachable set at time t of left invariant single-input control systems on semi-simple compact Lie groups and to estimate the minimal time needed to reach any point from identity. This method provides an effective way to give an upper and a lower bound for the minimal time needed to transfer a controlled quantum system with a drift from a given initial position to a given final position. The bounds include diameters of the flag manifolds; the latter are also explicitly computed in the paper. },
author = {Agrachev, Andrei, Chambrion, Thomas},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Control systems; semi-simple Lie groups; Riemannian geometry. ; Riemannian geometry},
language = {eng},
month = {6},
number = {3},
pages = {409-441},
publisher = {EDP Sciences},
title = {An estimation of the controllability time for single-input systems on compact Lie Groups},
url = {http://eudml.org/doc/249680},
volume = {12},
year = {2006},
}

TY - JOUR
AU - Agrachev, Andrei
AU - Chambrion, Thomas
TI - An estimation of the controllability time for single-input systems on compact Lie Groups
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2006/6//
PB - EDP Sciences
VL - 12
IS - 3
SP - 409
EP - 441
AB - Geometric control theory and Riemannian techniques are used to describe the reachable set at time t of left invariant single-input control systems on semi-simple compact Lie groups and to estimate the minimal time needed to reach any point from identity. This method provides an effective way to give an upper and a lower bound for the minimal time needed to transfer a controlled quantum system with a drift from a given initial position to a given final position. The bounds include diameters of the flag manifolds; the latter are also explicitly computed in the paper.
LA - eng
KW - Control systems; semi-simple Lie groups; Riemannian geometry. ; Riemannian geometry
UR - http://eudml.org/doc/249680
ER -

References

top
  1. J.F. Adams, Lectures on Lie groups. W.A. Benjamin, Inc., New York-Amsterdam (1969).  Zbl0206.31604
  2. A.A. Agrachev, Introduction to optimal control theory, in Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Abdus Salam Int. Cent. Theoret. Phys., Trieste (2002) 453–513 (electronic).  Zbl1034.93010
  3. A.A. Agrachev and Y.L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences. 87 Springer-Verlag, Berlin (2004). Control Theory and Optimization, II.  Zbl1062.93001
  4. A.O. Barut and R. Raczka, Theory of group representations and applications. World Scientific Publishing Co., Singapore, second edn. (1986).  Zbl0644.22011
  5. B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Systèmes de champs de vecteurs transitifs sur les groupes de Lie semi-simples et leurs espaces homogènes, in Systems analysis (Conf., Bordeaux, 1978)75Astérisque, Soc. Math. France, Paris (1980) 19–45.  Zbl0458.93009
  6. B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet, Transitivity of families of invariant vector fields on the semidirect products of Lie groups. Trans. Amer. Math. Soc.271 (1982) 525–535.  Zbl0519.49023
  7. B. Bonnard, Couples de générateurs de certaines sous-algèbres de Lie de l'algèbre de Lie symplectique affine, et applications. Publ. Dép. Math. (Lyon) 15 (1978) 1–36.  Zbl0434.93013
  8. B. Bonnard, Contrôlabilité de systèmes mécaniques sur les groupes de Lie. SIAM J. Control Optim.22 (1984) 711–722.  Zbl0549.93009
  9. U. Boscain, T. Chambrion and J.-P. Gauthier, On the K + P problem for a three-level quantum system: optimality implies resonance. J. Dynam. Control Syst.8 (2002) 547–572.  Zbl1022.53028
  10. U. Boscain, G. Charlot and J.-P. Gauthier, Optimal control of the Schrödinger equation with two or three levels, in Nonlinear and adaptive control (Sheffield 2001), Springer, Berlin, Lect. Not. Control Inform. Sci.281 (2003) 33–43.  Zbl1009.93060
  11. U. Boscain, G. Charlot, J.-P. Gauthier, S. Guérin and H.-R. Jauslin, Optimal control in laser-induced population transfer for two- and three-level quantum systems. J. Math. Phys.43 (2002) 2107–2132.  Zbl1059.81195
  12. U. Boscain and G. Charlot, Resonance of minimizers for n-level quantum systems with an arbitrary cost. ESAIM: COCV10 (2004) 593–614.  Zbl1072.49002
  13. U. Boscain and Y. Chitour, On the minimum time problem for driftless left-invariant control systems on SO(2). Commun. Pure Appl. Anal.1 (2002) 285–312.  Zbl1034.49015
  14. R. Brockett, New issues in the mathematics of control, in Mathematics unlimited — 2001 and beyond. Springer, Berlin (2001), pp. 189–219.  Zbl1005.93002
  15. D. D'Allessandro and M. Dahleh, Optimal control of two-level quantum systems. IEEE Trans. Automat. Control46 (2001) 866–876.  Zbl0993.81070
  16. M.P. do Carmo, Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, MA (1992). Translated from the second Portuguese edition by Francis Flaherty.  
  17. R. El Assoudi and J.-P. Gauthier, Controllability of right invariant systems on real simple Lie groups of type F4, G2, Cn, and Bn. Math. Control Signals Syst.1 (1988) 293–301.  Zbl0672.93009
  18. R. El Assoudi and J.-P. Gauthier, Controllability of right-invariant systems on semi-simple Lie groups, in New trends in nonlinear control theory (Nantes, 1988). Springer, Berlin, Lect. Notes Control Inform. Sci.122 (1989) 54–64.  
  19. R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, Controllability of right invariant systems on semi-simple Lie groups, in Geometry in nonlinear control and differential inclusions (Warsaw, 1993). Banach Center Publ., Polish Acad. Sci., Warsaw 32 (1995) 199–208.  Zbl0839.93019
  20. R. El Assoudi, J.P. Gauthier and I.A.K. Kupka, On subsemigroups of semisimple Lie groups. Ann. Inst. H. Poincaré Anal. Non Linéaire13 (1996) 117–133.  Zbl0848.93006
  21. R. El Assoudi and J.-P. Gauthier, Contrôlabilité sur l'espace quotient d'un groupe de Lie par un sous-groupe compact. C. R. Acad. Sci. Paris Sér. I Math.311 (1990) 189–191.  Zbl0717.93004
  22. A.L. Fradkov and A.N Churilov, Eds. Proceedings of the conference “Physics and Control” 2003 IEEE. August (2003).  
  23. J.-P. Gauthier, I. Kupka and G. Sallet, Controllability of right invariant systems on real simple Lie groups. Syst. Contr. Lett.5 187–190 (1984).  Zbl0552.93010
  24. S. Helgason, Differential geometry, Lie groups, and symmetric spaces 80, Pure Appl. Math., Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1978).  Zbl0451.53038
  25. V. Jurdjevic, Optimal control problems on Lie groups: crossroads between geometry and mechanics, in Geometry of feedback and optimal control. Dekker, New York, Monogr. Textbooks Pure Appl. Math.207 (1998) 257–303.  Zbl0925.93138
  26. V. Jurdjevic, Optimal control, geometry, and mechanics, in Mathematical control theory. Springer, New York (1999) 227–267.  Zbl1047.93506
  27. V. Jurdjevic and I. Kupka, Control systems on semisimple Lie groups and their homogeneous spaces. Ann. Inst. Fourier (Grenoble)31 (1981) 151–179.  Zbl0453.93011
  28. V. Jurdjevic and I. Kupka, Control systems subordinated to a group action: accessibility. J. Differ. Equ.39 (1981) 186–211.  Zbl0531.93008
  29. V. Jurdjevic, Geometric control theory, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge 52 (1997).  
  30. V. Jurdjevic, Lie determined systems and optimal problems with symmetries, in Geometric control and non-holonomic mechanics (Mexico City, 1996), Providence, RI. CMS Conf. Proc., Amer. Math. Soc.25 (1998) 1–28.  
  31. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications. 54 Cambridge University Press, Cambridge (1995). With a supplementary chapter by Katok and Leonardo Mendoza.  
  32. N. Khaneja, S.J. Glaser and R. Brockett, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer. Phys. Rev. A65 (2002) 032301, 11.  
  33. I. Kupka, Applications of semigroups to geometric control theory, in The analytical and topological theory of semigroupsde Gruyter Exp. Math. de Gruyter, Berlin 1 (1990) 337–345.  
  34. J. Milnor, Morse theory. Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51. Princeton University Press, Princeton, N.J. (1963).  
  35. J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances Math.21 (1976) 293–329.  Zbl0341.53030
  36. T. Püttmann, Injectivity radius and diameter of the manifolds of flags in the projective planes. Math. Z.246 (2004) 795–809.  Zbl1069.53034
  37. Y.L. Sachkov, Controllability of invariant systems on Lie groups and homogeneous spaces. J. Math. Sci.100 (2000) 2355–2427 Dynamical systems, 8.  Zbl1073.93511
  38. H.J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems. J. Differ. Equ.12 (1972) 95–116.  Zbl0242.49040
  39. V.S. Varadarajan, Lie groups, Lie algebras, and their representations. Prentice-Hall Inc., Englewood Cliffs, N.J. (1974). Prentice-Hall Series in Modern Analysis.  Zbl0371.22001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.