Hyperinvariant subspaces of operators on Hilbert spaces

Štefan Drahovský; Michal Zajac

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 117-126
  • ISSN: 0137-6934

How to cite

top

Drahovský, Štefan, and Zajac, Michal. "Hyperinvariant subspaces of operators on Hilbert spaces." Banach Center Publications 30.1 (1994): 117-126. <http://eudml.org/doc/262634>.

@article{Drahovský1994,
author = {Drahovský, Štefan, Zajac, Michal},
journal = {Banach Center Publications},
keywords = {hyperreflexivity; Hilbert space operators; hyperinvariant subspace; Sz. Nagy-Foias functional model},
language = {eng},
number = {1},
pages = {117-126},
title = {Hyperinvariant subspaces of operators on Hilbert spaces},
url = {http://eudml.org/doc/262634},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Drahovský, Štefan
AU - Zajac, Michal
TI - Hyperinvariant subspaces of operators on Hilbert spaces
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 117
EP - 126
LA - eng
KW - hyperreflexivity; Hilbert space operators; hyperinvariant subspace; Sz. Nagy-Foias functional model
UR - http://eudml.org/doc/262634
ER -

References

top
  1. [1] M. Barraa, Sous-espaces hyperinvariants d'un opérateur nilpotent sur un espace de Banach, J. Operator Theory 21 (1989), 315-321. Zbl0708.47006
  2. [2] M. Benlarbi Delaï et B. Charles, Description de Alg Lat A pour un opérateur A algébrique, Linear Algebra Appl. 187 (1993), 105-108. 
  3. [3] H. Bercovici, C₀-Fredholm operators II, Acta Sci. Math. (Szeged) 42 (1980), 3-42. 
  4. [4] H. Bercovici, Operator Theory and Arithmetic in H , Math. Surveys Monographs 26, Providence, R.I., 1988. 
  5. [5] H. Bercovici, C. Foiaş and B. Sz.-Nagy, Reflexive and hyper-reflexive operators of class C₀, Acta Sci. Math. (Szeged) 43 (1981), 5-13. Zbl0466.47009
  6. [6] H. Bercovici and L. Kérchy, Quasisimilarity and properties of the commutant of C 11 contractions, ibid. 45 (1983), 67-74. Zbl0526.47003
  7. [7] L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822. Zbl0153.04801
  8. [8] J. B. Conway and P. Y. Wu, The splitting of Q(T₁ ⊕ T₂) and related questions, Indiana Univ. Math. J. 26 (1977), 41-56. Zbl0352.46041
  9. [9] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. Zbl0213.14304
  10. [10] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93. Zbl0301.15011
  11. [11] R. G. Douglas, On the hyperinvariant subspaces for isometries, Math. Z. 107 (1968), 297-300. Zbl0164.16403
  12. [12] Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254. Zbl0804.47007
  13. [13] P. A. Fillmore, D. A. Herrero and W. F. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125-132. Zbl0359.47005
  14. [14] P. R. Halmos, Eigenvectors and adjoints, ibid. 4 (1971), 11-15. Zbl0264.15001
  15. [15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. Zbl0729.15001
  16. [16] V. V. Kapustin, Reflexivity of operators: general methods and a criterion for almost isometric contractions, Algebra i Analiz 4 (2) (1992), 141-160 (in Russian); English transl.: St. Petersburg Math. J. 4 (1993), 319-335. Zbl0783.47059
  17. [17] V. V. Kapustin and A. V. Lipin, Operator algebras and invariant subspace lattices. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), 23-56 (in Russian). Zbl0727.47029
  18. [18] L. Kérchy, On the commutant of C 11 -contractions, Acta Sci. Math. (Szeged) 43 (1981), 15-26. Zbl0466.47008
  19. [19] D. R. Larson and W. R. Wogen, Reflexivity properties of T ⊕ 0, J. Funct. Anal. 92 (1990), 448-467. 
  20. [20] S.-C. Ong, Remarks on invariant subspaces of finite dimensional operators, Linear Algebra Appl. 42 (1982), 99-101. Zbl0493.15009
  21. [21] S.-C. Ong, What kind of operators have few invariant subspaces?, ibid. 95 (1987), 181-185. 
  22. [22] S.-C. Ong, On equality of few invariant subspace lattices of operators, ibid. 144 (1991), 23-27. 
  23. [23] V. S. Shul'man, The Fuglede-Putnam theorem and reflexivity, Dokl. Akad. Nauk SSSR 210 (1973), 543-544 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 784-786. 
  24. [24] S. O. Sickler, The invariant subspaces of almost unitary operators, Indiana Univ. Math. J. 24 (1975), 636-649. Zbl0374.47002
  25. [25] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Nauka i Tekhnika, Minsk, 1966 (in Russian); English transl.: Academic Press, New York, 1968. 
  26. [26] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, and Akadémiai Kiadó, Budapest, 1970. Zbl0201.45003
  27. [27] K. Takahashi, Double commutants of operators quasi-similar to normal operators, Proc. Amer. Math. Soc. 92 (1984), 404-406. Zbl0521.47020
  28. [28] M. Uchiyama, Hyperinvariant subspaces of operators of class C₀(N), Acta Sci. Math. (Szeged) 39 (1977), 179-184. Zbl0345.47004
  29. [29] M. Uchiyama, Hyperinvariant subspaces for contractions of class C · 0 , Hokkaido Math. J. 6 (1977), 260-272. Zbl0368.47011
  30. [30] P. Y. Wu, The hyperinvariant subspace lattice of the contraction of class C · 0 , Proc. Amer. Math. Soc. 72 (1978), 527-530. Zbl0399.47005
  31. [31] P. Y. Wu, Hyperinvariant subspaces of C 11 contractions, ibid. 75 (1979), 53-58. 
  32. [32] P. Y. Wu, Hyperinvariant subspaces of C 11 contractions, II, Indiana Univ. Math. J. 27 (1978), 805-812. Zbl0364.47007
  33. [33] P. Y. Wu, Hyperinvariant subspaces of weak contractions, Acta Sci. Math. (Szeged) 41 (1979), 259-266. Zbl0421.47003
  34. [34] P. Y. Wu, Which linear transformations have isomorphic hyperinvariant subspace lattices?, Linear Algebra Appl. 169 (1992), 163-178. Zbl0760.15003
  35. [35] M. Zajac, Hyperinvariant subspace lattice of some C₀-contractions, Math. Slovaca 31 (1981), 397-404. Zbl0475.47008
  36. [36] M. Zajac, Hyperinvariant subspace lattice of weak contractions, ibid. 33 (1983), 75-80. Zbl0509.47005
  37. [37] M. Zajac, Hyperinvariant subspaces of weak contractions, in: Oper. Theory: Adv. Appl. 14, Birkhäuser, 1984, 291-299. 
  38. [38] M. Zajac, Hyperinvariant subspace lattice of isometries, Math. Slovaca 37 (1987), 291-297. Zbl0633.47004
  39. [39] M. Zajac, Hyperinvariant subspaces of weak contractions, II, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, 1988, 317-322. 
  40. [40] M. Zajac, On the singular unitary part of a contraction, Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384. Zbl0723.47007
  41. [41] M. Zajac, Hyper-reflexivity of isometries and weak contractions, J. Operator Theory 25 (1991), 43-51. Zbl0819.47058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.