Hyperinvariant subspaces of operators on Hilbert spaces
Štefan Drahovský; Michal Zajac
Banach Center Publications (1994)
- Volume: 30, Issue: 1, page 117-126
- ISSN: 0137-6934
Access Full Article
topHow to cite
topDrahovský, Štefan, and Zajac, Michal. "Hyperinvariant subspaces of operators on Hilbert spaces." Banach Center Publications 30.1 (1994): 117-126. <http://eudml.org/doc/262634>.
@article{Drahovský1994,
author = {Drahovský, Štefan, Zajac, Michal},
journal = {Banach Center Publications},
keywords = {hyperreflexivity; Hilbert space operators; hyperinvariant subspace; Sz. Nagy-Foias functional model},
language = {eng},
number = {1},
pages = {117-126},
title = {Hyperinvariant subspaces of operators on Hilbert spaces},
url = {http://eudml.org/doc/262634},
volume = {30},
year = {1994},
}
TY - JOUR
AU - Drahovský, Štefan
AU - Zajac, Michal
TI - Hyperinvariant subspaces of operators on Hilbert spaces
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 117
EP - 126
LA - eng
KW - hyperreflexivity; Hilbert space operators; hyperinvariant subspace; Sz. Nagy-Foias functional model
UR - http://eudml.org/doc/262634
ER -
References
top- [1] M. Barraa, Sous-espaces hyperinvariants d'un opérateur nilpotent sur un espace de Banach, J. Operator Theory 21 (1989), 315-321. Zbl0708.47006
- [2] M. Benlarbi Delaï et B. Charles, Description de Alg Lat A pour un opérateur A algébrique, Linear Algebra Appl. 187 (1993), 105-108.
- [3] H. Bercovici, C₀-Fredholm operators II, Acta Sci. Math. (Szeged) 42 (1980), 3-42.
- [4] H. Bercovici, Operator Theory and Arithmetic in , Math. Surveys Monographs 26, Providence, R.I., 1988.
- [5] H. Bercovici, C. Foiaş and B. Sz.-Nagy, Reflexive and hyper-reflexive operators of class C₀, Acta Sci. Math. (Szeged) 43 (1981), 5-13. Zbl0466.47009
- [6] H. Bercovici and L. Kérchy, Quasisimilarity and properties of the commutant of contractions, ibid. 45 (1983), 67-74. Zbl0526.47003
- [7] L. Brickman and P. A. Fillmore, The invariant subspace lattice of a linear transformation, Canad. J. Math. 19 (1967), 810-822. Zbl0153.04801
- [8] J. B. Conway and P. Y. Wu, The splitting of Q(T₁ ⊕ T₂) and related questions, Indiana Univ. Math. J. 26 (1977), 41-56. Zbl0352.46041
- [9] J. A. Deddens, Every isometry is reflexive, Proc. Amer. Math. Soc. 28 (1971), 509-512. Zbl0213.14304
- [10] J. A. Deddens and P. A. Fillmore, Reflexive linear transformations, Linear Algebra Appl. 10 (1975), 89-93. Zbl0301.15011
- [11] R. G. Douglas, On the hyperinvariant subspaces for isometries, Math. Z. 107 (1968), 297-300. Zbl0164.16403
- [12] Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254. Zbl0804.47007
- [13] P. A. Fillmore, D. A. Herrero and W. F. Longstaff, The hyperinvariant subspace lattice of a linear transformation, Linear Algebra Appl. 17 (1977), 125-132. Zbl0359.47005
- [14] P. R. Halmos, Eigenvectors and adjoints, ibid. 4 (1971), 11-15. Zbl0264.15001
- [15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991. Zbl0729.15001
- [16] V. V. Kapustin, Reflexivity of operators: general methods and a criterion for almost isometric contractions, Algebra i Analiz 4 (2) (1992), 141-160 (in Russian); English transl.: St. Petersburg Math. J. 4 (1993), 319-335. Zbl0783.47059
- [17] V. V. Kapustin and A. V. Lipin, Operator algebras and invariant subspace lattices. I, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 178 (1989), 23-56 (in Russian). Zbl0727.47029
- [18] L. Kérchy, On the commutant of -contractions, Acta Sci. Math. (Szeged) 43 (1981), 15-26. Zbl0466.47008
- [19] D. R. Larson and W. R. Wogen, Reflexivity properties of T ⊕ 0, J. Funct. Anal. 92 (1990), 448-467.
- [20] S.-C. Ong, Remarks on invariant subspaces of finite dimensional operators, Linear Algebra Appl. 42 (1982), 99-101. Zbl0493.15009
- [21] S.-C. Ong, What kind of operators have few invariant subspaces?, ibid. 95 (1987), 181-185.
- [22] S.-C. Ong, On equality of few invariant subspace lattices of operators, ibid. 144 (1991), 23-27.
- [23] V. S. Shul'man, The Fuglede-Putnam theorem and reflexivity, Dokl. Akad. Nauk SSSR 210 (1973), 543-544 (in Russian); English transl.: Soviet Math. Dokl. 14 (1973), 784-786.
- [24] S. O. Sickler, The invariant subspaces of almost unitary operators, Indiana Univ. Math. J. 24 (1975), 636-649. Zbl0374.47002
- [25] D. A. Suprunenko and R. I. Tyshkevich, Commutative Matrices, Nauka i Tekhnika, Minsk, 1966 (in Russian); English transl.: Academic Press, New York, 1968.
- [26] B. Sz.-Nagy and C. Foiaş, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, and Akadémiai Kiadó, Budapest, 1970. Zbl0201.45003
- [27] K. Takahashi, Double commutants of operators quasi-similar to normal operators, Proc. Amer. Math. Soc. 92 (1984), 404-406. Zbl0521.47020
- [28] M. Uchiyama, Hyperinvariant subspaces of operators of class C₀(N), Acta Sci. Math. (Szeged) 39 (1977), 179-184. Zbl0345.47004
- [29] M. Uchiyama, Hyperinvariant subspaces for contractions of class , Hokkaido Math. J. 6 (1977), 260-272. Zbl0368.47011
- [30] P. Y. Wu, The hyperinvariant subspace lattice of the contraction of class , Proc. Amer. Math. Soc. 72 (1978), 527-530. Zbl0399.47005
- [31] P. Y. Wu, Hyperinvariant subspaces of contractions, ibid. 75 (1979), 53-58.
- [32] P. Y. Wu, Hyperinvariant subspaces of contractions, II, Indiana Univ. Math. J. 27 (1978), 805-812. Zbl0364.47007
- [33] P. Y. Wu, Hyperinvariant subspaces of weak contractions, Acta Sci. Math. (Szeged) 41 (1979), 259-266. Zbl0421.47003
- [34] P. Y. Wu, Which linear transformations have isomorphic hyperinvariant subspace lattices?, Linear Algebra Appl. 169 (1992), 163-178. Zbl0760.15003
- [35] M. Zajac, Hyperinvariant subspace lattice of some C₀-contractions, Math. Slovaca 31 (1981), 397-404. Zbl0475.47008
- [36] M. Zajac, Hyperinvariant subspace lattice of weak contractions, ibid. 33 (1983), 75-80. Zbl0509.47005
- [37] M. Zajac, Hyperinvariant subspaces of weak contractions, in: Oper. Theory: Adv. Appl. 14, Birkhäuser, 1984, 291-299.
- [38] M. Zajac, Hyperinvariant subspace lattice of isometries, Math. Slovaca 37 (1987), 291-297. Zbl0633.47004
- [39] M. Zajac, Hyperinvariant subspaces of weak contractions, II, in: Oper. Theory: Adv. Appl. 28, Birkhäuser, 1988, 317-322.
- [40] M. Zajac, On the singular unitary part of a contraction, Rev. Roumaine Math. Pures Appl. 35 (1990), 379-384. Zbl0723.47007
- [41] M. Zajac, Hyper-reflexivity of isometries and weak contractions, J. Operator Theory 25 (1991), 43-51. Zbl0819.47058
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.