The boundary behaviour of S p -valued functions analytic in the half-plane with nonnegative imaginary part

S. Naboko

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 277-285
  • ISSN: 0137-6934

How to cite

top

Naboko, S.. "The boundary behaviour of $S_p$-valued functions analytic in the half-plane with nonnegative imaginary part." Banach Center Publications 30.1 (1994): 277-285. <http://eudml.org/doc/262639>.

@article{Naboko1994,
author = {Naboko, S.},
journal = {Banach Center Publications},
keywords = {operator valued function; R-function; Schatten -classes},
language = {eng},
number = {1},
pages = {277-285},
title = {The boundary behaviour of $S_p$-valued functions analytic in the half-plane with nonnegative imaginary part},
url = {http://eudml.org/doc/262639},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Naboko, S.
TI - The boundary behaviour of $S_p$-valued functions analytic in the half-plane with nonnegative imaginary part
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 277
EP - 285
LA - eng
KW - operator valued function; R-function; Schatten -classes
UR - http://eudml.org/doc/262639
ER -

References

top
  1. [1] K. Asano, Notes on Hilbert transforms of vector valued functions in the complex plane and their boundary values, Publ. Res. Inst. Math. Sci. 13 (1967), 572-577. Zbl0179.16403
  2. [2] F. V. Atkinson, Discrete and Continuous Boundary Value Problems, Russian edition, Mir, Moscow, 1968 (additional chapters devoted to R-functions written by M. G. Kreĭn and I. Kats). Zbl0169.10601
  3. [3] M. S. Birman and S. B. Entina, A stationary approach to abstract scattering theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 401-430 (in Russian); English transl. in Math. USSR-Izv. 1 (1967). Zbl0116.32502
  4. [4] M. S. Birman and D. R. Yafaev, Spectral properties of the scattering matrix, Algebra i Analiz 4 (6) (1992), 1-27 (in Russian). Zbl0819.47009
  5. [5] J. Bourgain, Vector valued singular integrals and the H¹-BMO duality, Israel Sem. Geom. Aspects Funct. Anal. (1983/84), XVI, Tel Aviv Univ., 1984, 23 pp. 
  6. [6] J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math. Soc. 294 (1986), 501-515. Zbl0638.46011
  7. [7] A. V. Bukhvalov, Continuity of operators acting in spaces of vector-valued functions, applications to the theory of bases, Zap. Nauchn. Sem. LOMI 157 (1987), 5-22 (in Russian). Zbl0637.46032
  8. [8] D. L. Burkholder, Martingale transforms and the geometry of Banach space, in: Lecture Notes in Math. 860, Springer, 1981, 35-50. 
  9. [9] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. Harmonic Anal. in Honor of A. Zygmund (Chicago, 1981), Wadsworth, Belmont, Calif., 1983, 270-286. 
  10. [10] L. D. Faddeev, On the Friedrichs model in the theory of perturbations of the continuous spectrum, Trudy Mat. Inst. Steklov. 73 (1964), 292-313 (in Russian); English transl. in Amer. Math. Soc. Transl. (2) 62 (1967). Zbl0148.12801
  11. [11] I. Ts. Gokhberg and M. G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, Amer. Math. Soc., Providence, R.I., 1969. 
  12. [12] I. Ts. Gokhberg and M. G. Kreĭn, The Theory of Volterra Operators in a Hilbert Space, Amer. Math. Soc., Providence, R.I., 1970. 
  13. [13] J. A. Gutierrez and H. E. Lacey, On the Hilbert transform for Banach valued functions, in: Lecture Notes in Math. 939, Springer, 1982, 73-80. 
  14. [14] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966. Zbl0148.12601
  15. [15] P. Koosis, Introduction to H p -Spaces, Cambridge Univ. Press, 1980. Zbl0435.30001
  16. [16] V. I. Matsaev and Yu. A. Palant, On the powers of a bounded dissipative operator, Ukrain. Mat. Zh. 14 (1962), 329-337 (in Russian). 
  17. [17] S. N. Naboko, A functional model of perturbation theory and its applications in scattering theory, Trudy Mat. Inst. Steklov. 147 (1980), 84-114 (in Russian); English transl. in Proc. Steklov Inst. Math. 1981, (2). Zbl0445.47010
  18. [18] S. N. Naboko, On conditions for the existence of the wave operators in the nonselfadjoint case, in: Probl. Mat. Fiz. 12, Leningrad Univ., 1987, 132-155 (in Russian). 
  19. [19] S. N. Naboko, On the boundary values of analytic operator-valued functions with positive imaginary part, Zap. Nauchn. Sem. LOMI 157 (1987), 55-69 (in Russian). Zbl0643.47013
  20. [20] S. N. Naboko, Uniqueness theorems for operator-valued functions with positive imaginary part and the singular spectrum in the selfadjoint Friedrichs model, Ark. Mat. 25 (1987), 115-140. Zbl0632.47012
  21. [21] S. N. Naboko, Nontangential boundary values of operator-valued R-functions in a half-plane, Algebra i Analiz 1 (5) (1989), 197-222 (in Russian); English transl.: Leningrad Math. J. 1 (5) (1990), 1255-1278. 
  22. [22] B. S. Pavlov and L. D. Faddeev, Zero sets of operator functions with a positive imaginary part, in: Lecture Notes in Math. 1043, Springer, 1984, 124-128. 
  23. [23] B. S. Pavlov and S. V. Petras, On the singular spectrum of a weakly perturbed multiplication operator, Funktsional. Anal. i Prilozhen. 4 (2) (1970), 54-61 (in Russian); English transl. in Functional Anal. Appl. 4 (1970). Zbl0206.43801
  24. [24] J. L. Rubio de Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), 95-105. Zbl0589.42002
  25. [25] R. Ryan, Boundary values of analytic vector valued functions, Proc. Nederl. Akad. Wetensch. Ser. A 65 (1962), 558-572. Zbl0127.07001
  26. [26] J. Schwartz, A remark on inequalities of Calderón-Zygmund type for vector-valued functions, Comm. Pure Appl. Math. 14 (1961), 785-799. Zbl0106.08104
  27. [27] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
  28. [28] B. Sz.-Nagy and C. Foiaş, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Masson, Paris, 1967. Zbl0157.43201
  29. [29] V. F. Veselov and S. N. Naboko, The determinant of a characteristic function and the singular spectrum of a nonselfadjoint operator, Mat. Sb. 129 (171) (1986), 20-29 (in Russian); English transl. in Math. USSR-Sb. 57 (1987). Zbl0611.47003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.