# Plurisubharmonic saddles

Annales Polonici Mathematici (1996)

- Volume: 63, Issue: 3, page 235-245
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topSiegfried Momm. "Plurisubharmonic saddles." Annales Polonici Mathematici 63.3 (1996): 235-245. <http://eudml.org/doc/262641>.

@article{SiegfriedMomm1996,

abstract = {A certain linear growth of the pluricomplex Green function of a bounded convex domain of $ℂ^N$ at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.},

author = {Siegfried Momm},

journal = {Annales Polonici Mathematici},

keywords = {extremal plurisubharmonic functions; uniqueness theorem; convex sets; subharmonic saddle; subharmonic function; plurisubharmonic saddles; angular derivatives of conformal mappings},

language = {eng},

number = {3},

pages = {235-245},

title = {Plurisubharmonic saddles},

url = {http://eudml.org/doc/262641},

volume = {63},

year = {1996},

}

TY - JOUR

AU - Siegfried Momm

TI - Plurisubharmonic saddles

JO - Annales Polonici Mathematici

PY - 1996

VL - 63

IS - 3

SP - 235

EP - 245

AB - A certain linear growth of the pluricomplex Green function of a bounded convex domain of $ℂ^N$ at a given boundary point is related to the existence of a certain plurisubharmonic function called a “plurisubharmonic saddle”. In view of classical results on the existence of angular derivatives of conformal mappings, for the case of a single complex variable, this allows us to deduce a criterion for the existence of subharmonic saddles.

LA - eng

KW - extremal plurisubharmonic functions; uniqueness theorem; convex sets; subharmonic saddle; subharmonic function; plurisubharmonic saddles; angular derivatives of conformal mappings

UR - http://eudml.org/doc/262641

ER -

## References

top- [1] C. O. Kiselman, The partial Legendre transform for plurisubharmonic functions, Invent. Math. 49 (1978), 137-148. Zbl0378.32010
- [2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991.
- [3] A. S. Krivosheev, A criterion for the solvability of nonhomogeneous convolution equations in convex domains of ${\u2102}^{N}$, Math. USSR-Izv. 36 (1991), 497-517. Zbl0723.45005
- [4] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. Zbl0492.32025
- [5] S. Momm, Convex univalent functions and continuous linear right inverses, J. Funct. Anal. 103 (1992), 85-103. Zbl0771.46016
- [6] S. Momm, The boundary behavior of extremal plurisubharmonic functions, Acta Math. 172 (1994), 51-75. Zbl0802.32024
- [7] S. Momm, Extremal plurisubharmonic functions associated to convex pluricomplex Green functions with pole at infinity, J. Reine Angew. Math., to appear. Zbl0848.31008
- [8] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993. Zbl0798.52001
- [9] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959. Zbl0087.28401
- [10] V. P. Zakharyuta, Extremal plurisubharmonic functions, Hilbert scales and isomorphisms of spaces of analytic functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., part I, 19 (1974), 133-157, part II, 21 (1974), 65-83 (in Russian).

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.