Comtrans algebras and their physical applications

Jonathan Smith

Banach Center Publications (1993)

  • Volume: 28, Issue: 1, page 319-326
  • ISSN: 0137-6934

How to cite

top

Smith, Jonathan. "Comtrans algebras and their physical applications." Banach Center Publications 28.1 (1993): 319-326. <http://eudml.org/doc/262649>.

@article{Smith1993,
author = {Smith, Jonathan},
journal = {Banach Center Publications},
keywords = {brief survey; comtrans algebras; physical applications; Minkowski space- time; vector triple product; transposed comtrans algebra; Hermitian operators; quantum mechanics},
language = {eng},
number = {1},
pages = {319-326},
title = {Comtrans algebras and their physical applications},
url = {http://eudml.org/doc/262649},
volume = {28},
year = {1993},
}

TY - JOUR
AU - Smith, Jonathan
TI - Comtrans algebras and their physical applications
JO - Banach Center Publications
PY - 1993
VL - 28
IS - 1
SP - 319
EP - 326
LA - eng
KW - brief survey; comtrans algebras; physical applications; Minkowski space- time; vector triple product; transposed comtrans algebra; Hermitian operators; quantum mechanics
UR - http://eudml.org/doc/262649
ER -

References

top
  1. [1] M. A. Akivis, Local algebras on a multidimensional three-web, Sibirsk. Mat. Zh. 17 (1976), 5-11 (in Russian); English translation: Siberian Math. J. 17 (1976), 3-8. 
  2. [2] I. Białynicki-Birula, A new approach to time reflection, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 805-807. Zbl0085.43002
  3. [3] O. Chein, H. O. Pflugfelder and J. D. H. Smith (eds.), Quasigroups and Loops: Theory and Applications, Heldermann, Berlin 1990. Zbl0719.20036
  4. [4] V. V. Goldberg, Theory of Multicodimensional (n+1)-webs, Kluwer, Dordrecht 1988. Zbl0668.53001
  5. [5] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston 1973. Zbl0265.18001
  6. [6] K. H. Hofmann and K. Strambach, Lie's fundamental theorems for local analytical loops, Pacific J. Math. 123 (1986), 301-327. Zbl0596.22002
  7. [7] B. Huppert, Endliche Gruppen I, Springer, Berlin 1967. Zbl0217.07201
  8. [8] P. T. Matthews, Introduction to Quantum Mechanics, McGraw-Hill, New York 1963; Polish translation: PWN, Warszawa 1977. Zbl0111.42802
  9. [9] G. A. Saizew, Algebraic Problems of Mathematical and Theoretical Physics, Nauka, Moscow 1974 (in Russian); German translation: Akademie-Verlag, Berlin 1979. 
  10. [10] C. Scheiderer, Gewebegeometrie 10.6 bis 16.6.1984, Tagungsbericht 27/1984, Mathematisches Forschungsinstitut Oberwolfach, 1984. 
  11. [11] X. R. Shen and J. D. H. Smith, Simple multilinear algebras, rectangular matrices and Lie algebras, J. Algebra, to appear. Zbl0811.17024
  12. [12] X. R. Shen and J. D. H. Smith, Comtrans algebras and bilinear forms, Arch. Math. (Basel) 59 (1992), 327-333. Zbl0739.17010
  13. [13] X. R. Shen and J. D. H. Smith, Representation theory of comtrans algebras, J. Pure Appl. Algebra 80 (1992), 177-195. Zbl0758.17001
  14. [14] J. D. H. Smith, Mal'cev Varieties, Springer, Berlin 1976. Zbl0344.08002
  15. [15] J. D. H. Smith, Multilinear algebras and Lie's Theorem for formal n-loops, Arch. Math. (Basel) 51 (1988), 169-177. Zbl0627.22003
  16. [16] Á. Szendrei, Clones in Universal Algebra, Les Presses de l'Université de Montréal, Montréal 1986. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.