Comtrans algebras and their physical applications
Banach Center Publications (1993)
- Volume: 28, Issue: 1, page 319-326
- ISSN: 0137-6934
Access Full Article
topHow to cite
topReferences
top- [1] M. A. Akivis, Local algebras on a multidimensional three-web, Sibirsk. Mat. Zh. 17 (1976), 5-11 (in Russian); English translation: Siberian Math. J. 17 (1976), 3-8.
- [2] I. Białynicki-Birula, A new approach to time reflection, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 805-807. Zbl0085.43002
- [3] O. Chein, H. O. Pflugfelder and J. D. H. Smith (eds.), Quasigroups and Loops: Theory and Applications, Heldermann, Berlin 1990. Zbl0719.20036
- [4] V. V. Goldberg, Theory of Multicodimensional (n+1)-webs, Kluwer, Dordrecht 1988. Zbl0668.53001
- [5] H. Herrlich and G. E. Strecker, Category Theory, Allyn and Bacon, Boston 1973. Zbl0265.18001
- [6] K. H. Hofmann and K. Strambach, Lie's fundamental theorems for local analytical loops, Pacific J. Math. 123 (1986), 301-327. Zbl0596.22002
- [7] B. Huppert, Endliche Gruppen I, Springer, Berlin 1967. Zbl0217.07201
- [8] P. T. Matthews, Introduction to Quantum Mechanics, McGraw-Hill, New York 1963; Polish translation: PWN, Warszawa 1977. Zbl0111.42802
- [9] G. A. Saizew, Algebraic Problems of Mathematical and Theoretical Physics, Nauka, Moscow 1974 (in Russian); German translation: Akademie-Verlag, Berlin 1979.
- [10] C. Scheiderer, Gewebegeometrie 10.6 bis 16.6.1984, Tagungsbericht 27/1984, Mathematisches Forschungsinstitut Oberwolfach, 1984.
- [11] X. R. Shen and J. D. H. Smith, Simple multilinear algebras, rectangular matrices and Lie algebras, J. Algebra, to appear. Zbl0811.17024
- [12] X. R. Shen and J. D. H. Smith, Comtrans algebras and bilinear forms, Arch. Math. (Basel) 59 (1992), 327-333. Zbl0739.17010
- [13] X. R. Shen and J. D. H. Smith, Representation theory of comtrans algebras, J. Pure Appl. Algebra 80 (1992), 177-195. Zbl0758.17001
- [14] J. D. H. Smith, Mal'cev Varieties, Springer, Berlin 1976. Zbl0344.08002
- [15] J. D. H. Smith, Multilinear algebras and Lie's Theorem for formal n-loops, Arch. Math. (Basel) 51 (1988), 169-177. Zbl0627.22003
- [16] Á. Szendrei, Clones in Universal Algebra, Les Presses de l'Université de Montréal, Montréal 1986.