Simple multilinear algebras and hermitian operators

T. S. R. Fuad; Jon D. Phillips; Xiaorong Shen; Jonathan D. H. Smith

Commentationes Mathematicae Universitatis Carolinae (2000)

  • Volume: 41, Issue: 2, page 251-259
  • ISSN: 0010-2628

Abstract

top
The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called T -Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of n -dimensional T -Hermitian matrices furnishes a simple comtrans algebra.

How to cite

top

Fuad, T. S. R., et al. "Simple multilinear algebras and hermitian operators." Commentationes Mathematicae Universitatis Carolinae 41.2 (2000): 251-259. <http://eudml.org/doc/248600>.

@article{Fuad2000,
abstract = {The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.},
author = {Fuad, T. S. R., Phillips, Jon D., Shen, Xiaorong, Smith, Jonathan D. H.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {comtrans algebras; $T$-Hermitian matrices; simple algebras; comtrans algebra; Hermitian matrix; simple algebra},
language = {eng},
number = {2},
pages = {251-259},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Simple multilinear algebras and hermitian operators},
url = {http://eudml.org/doc/248600},
volume = {41},
year = {2000},
}

TY - JOUR
AU - Fuad, T. S. R.
AU - Phillips, Jon D.
AU - Shen, Xiaorong
AU - Smith, Jonathan D. H.
TI - Simple multilinear algebras and hermitian operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2000
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 41
IS - 2
SP - 251
EP - 259
AB - The paper studies multilinear algebras, known as comtrans algebras, that are determined by so-called $T$-Hermitian matrices over an arbitrary field. The main result of this paper shows that the comtrans algebra of $n$-dimensional $T$-Hermitian matrices furnishes a simple comtrans algebra.
LA - eng
KW - comtrans algebras; $T$-Hermitian matrices; simple algebras; comtrans algebra; Hermitian matrix; simple algebra
UR - http://eudml.org/doc/248600
ER -

References

top
  1. Chein O., Pflugfelder H.O., Smith J.D.H., Quasigroups and Loops: Theory and Applications, Heldermann, Berlin, 1990. Zbl0719.20036MR1125806
  2. Goldberg V.V., Theory of Multicodimensional ( n + 1 ) -Webs, Kluwer, Dordrecht, 1988. Zbl0668.53001MR0998774
  3. Dirac P.A.M., The Principles of Quantum Mechanics, Oxford, 1967. MR0023198
  4. Saizew G.A., Algebraic Problems of Mathematical and Theoretical Physics (in Russian), Moscow, 1974; German translation: Berlin, 1979. MR0554236
  5. Shen X.R., Smith J.D.H., Simple multilinear algebras, rectangular matrices and Lie algebras, J. Algebra 160 (1993), 424-433. (1993) Zbl0811.17024MR1244921
  6. Shen X.R., Smith J.D.H., Comtrans algebras and bilinear forms, Arch. Math 59 (1992), 327-333. (1992) Zbl0739.17010MR1179457
  7. Shen X.R., Smith J.D.H., Representation theorem of comtrans algebras, J. Pure Appl. Algebra 80 (1992), 177-195. (1992) MR1172725
  8. Shen X.R., Smith J.D.H., Simple algebras of hermitian operators, Arch. Math. 65 (1995), 534-539. (1995) Zbl0853.17021MR1360074
  9. Smith J.D.H., Multilinear algebras and Lie's Theorem for formal n-loops, Arch. Math. 51 (1988), 169-177. (1988) Zbl0627.22003MR0959394
  10. Smith J.D.H., Comtrans algebras and their physical applications, Banach Center Publ. 28 (1993), 319-326. (1993) Zbl0811.17025MR1446291

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.