On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva

Gary Lieberman

Banach Center Publications (1992)

  • Volume: 27, Issue: 2, page 295-308
  • ISSN: 0137-6934

How to cite

top

Lieberman, Gary. "On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva." Banach Center Publications 27.2 (1992): 295-308. <http://eudml.org/doc/262650>.

@article{Lieberman1992,
author = {Lieberman, Gary},
journal = {Banach Center Publications},
keywords = {quasilinear elliptic equations},
language = {eng},
number = {2},
pages = {295-308},
title = {On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva},
url = {http://eudml.org/doc/262650},
volume = {27},
year = {1992},
}

TY - JOUR
AU - Lieberman, Gary
TI - On the natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 2
SP - 295
EP - 308
LA - eng
KW - quasilinear elliptic equations
UR - http://eudml.org/doc/262650
ER -

References

top
  1. [1] L. Boccardo, P. Marcellini and C. Sbordone, L -regularity for variational problems with sharp non standard growth conditions, Boll. Un. Mat. Ital. (7) 4-A (1990), 219-225. Zbl0711.49058
  2. [2] H. J. Choe, A regularity theory for a more general class of quasilinear elliptic differential equations and obstacle problems, Arch. Rational Mech. Anal. 114 (1991), 393-394. Zbl0733.35024
  3. [3] H. J. Choe, Regularity for certain degenerate elliptic double obstacle problems, J. Math. Anal. Appl., to appear. Zbl0798.35057
  4. [4] E. DiBenedetto, C 1 + α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827-850. Zbl0539.35027
  5. [5] E. DiBenedetto, On the local behavior of solutions of degenerate parabolic equations with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (4) 13 (1986), 487-535. Zbl0635.35052
  6. [6] E. DiBenedetto and Y.-Z. Chen, On the local behaviour of solutions of singular parabolic equations, Arch. Rational Mech. Anal. 103 (1988), 319-345. Zbl0673.35047
  7. [7] E. DiBenedetto and Y.-Z. Chen, Boundary estimates for solutions of nonlinear degenerate parabolic systems, J. Reine Angew. Math. 395 (1989), 102-131. Zbl0661.35052
  8. [8] E. DiBenedetto and A. Friedman, Regularity of solutions of nonlinear degenerate parabolic systems, ibid. 349 (1984), 83-128. Zbl0527.35038
  9. [9] E. DiBenedetto and A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, ibid. 357 (1985), 1-22. Zbl0549.35061
  10. [10] E. DiBenedetto and M. A. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when 1 < p < 2, Arch. Rational Mech. Anal. 111 (1990), 225-290. Zbl0726.35066
  11. [11] E. DiBenedetto and N. S. Trudinger, Harnack inequalities for quasi-minima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308. Zbl0565.35012
  12. [12] T. K. Donaldson and N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75. Zbl0216.15702
  13. [13] M. Giaquinta, Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248. Zbl0638.49005
  14. [14] M. Giaquinta and E. Giusti, Global C 1 , α regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math. 351 (1984), 55-65. Zbl0528.35014
  15. [15] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin 1983. Zbl0562.35001
  16. [16] T. Kilpeläinen and W. P. Ziemer, Pointwise regularity of solutions to nonlinear double obstacle problems, Ark. Mat. 29 (1991), 83-106. Zbl0733.35025
  17. [17] A. G. Korolev, On boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities, Mat. Sb. 180 (1989), 78-100 (in Russian); English transl.: Math. USSR-Sb. 66 (1990), 83-106. 
  18. [18] M. A. Kranosel'skii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen 1961. 
  19. [19] N. V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 75-108 (in Russian); English transl.: Math. USSR-Izv. 21 (1984), 67-98. 
  20. [20] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1967. 
  21. [21] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow 1964 (in Russian); English transl.: Academic Press, New York 1968. 2nd Russian ed., 1973. 
  22. [22] G. M. Lieberman, Interior gradient bounds for non-uniformly parabolic equations, Indiana Univ. Math. J. 32 (1983), 579-601. Zbl0491.35021
  23. [23] G. M. Lieberman, The first initial-boundary value problem for quasilinear second order parabolic equations, Ann. Scuola Norm Sup. Pisa (4) 13 (1986), 347-387. Zbl0655.35047
  24. [24] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203-1219. Zbl0675.35042
  25. [25] G. M. Lieberman, Boundary regularity for solutions of degenerate parabolic equations, ibid. 14 (1990), 501-524. Zbl0703.35098
  26. [26] G. M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361. Zbl0742.35028
  27. [27] G. M. Lieberman, Local and boundary regularity for some variational inequalities involving p-Laplaciantype operators, to appear. 
  28. [28] G. M. Lieberman, Regularity of solutions to some degenerate double obstacle problems, Indiana Univ. Math. J. 40 (1991), 1009-1028. Zbl0767.35029
  29. [29] G. M. Lieberman, Boundary and initial regularity for solutions of degenerate parabolic equations, Nonlinear Anal., to appear. Zbl0782.35036
  30. [30] J. H. Michael and W. P. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal. 10 (1986), 1427-1448. Zbl0603.49006
  31. [31] J. H. Michael and W. P. Ziemer, Existence of solutions to obstacle problems, ibid. 17 (1991), 45-71. Zbl0735.35067
  32. [32] J. Mu, Higher regularity of the solution to the p-Laplacian obstacle problem, J. Differential Equations 95 (1992), 370-384. Zbl0765.49008
  33. [33] J. Mu and W. P. Ziemer, Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations, Comm. Partial Differential Equations 16 (1991), 821-843. Zbl0742.35010
  34. [34] L. M. Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), 821-855. Zbl0346.35016
  35. [35] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150. Zbl0488.35017
  36. [36] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030
  37. [37] N. N. Ural'tseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222 (in Russian); English transl.: Sem. Math. V. A. Steklov Math. Inst. Leningrad 7 (1968), 83-99. 
  38. [38] M. Wiegner, On C α -regularity of the gradient of solutions of degenerate parabolic systems, Ann. Mat. Pura Appl. 145 (1986), 385-405. Zbl0642.35046

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.