The first initial-boundary value problem for quasilinear second order parabolic equations

Gary M. Lieberman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 3, page 347-387
  • ISSN: 0391-173X

How to cite

top

Lieberman, Gary M.. "The first initial-boundary value problem for quasilinear second order parabolic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.3 (1986): 347-387. <http://eudml.org/doc/83983>.

@article{Lieberman1986,
author = {Lieberman, Gary M.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Dirichlet problem; quasilinear; existence; non-existence; smooth initial and boundary values; regularity},
language = {eng},
number = {3},
pages = {347-387},
publisher = {Scuola normale superiore},
title = {The first initial-boundary value problem for quasilinear second order parabolic equations},
url = {http://eudml.org/doc/83983},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Lieberman, Gary M.
TI - The first initial-boundary value problem for quasilinear second order parabolic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 3
SP - 347
EP - 387
LA - eng
KW - Dirichlet problem; quasilinear; existence; non-existence; smooth initial and boundary values; regularity
UR - http://eudml.org/doc/83983
ER -

References

top
  1. [1] S. Bernstein, Sur les équations du calcul des variations, Ann. Scuola Norm Sup. Pisa, Cl. Sci., 29 (1912), pp. 431-485. Zbl43.0460.01MR1509153JFM43.0460.01
  2. [2] D. Edmunds - L. Peletier, Quasilinear parabolic equations, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., (3) 25 (1971), pp. 399-421. Zbl0219.35054MR306704
  3. [3] A. Friedman, Partial differential equations of parabolic type, Krieger PressMalabar, Florida, 1983. 
  4. [4] Futev, to appear. 
  5. [5] M. Giaquinta - E. Giusti, Global C1,α-regularity for second order quasilinear elliptic equations in divergence form, J. Reine Angew. Math., 351 (1984), pp. 55-65. Zbl0528.35014
  6. [6] D. Gilbarg, Boundary value problems for nonlinear elliptic equations in n variables, in: Nonlinear Problems, pp. 151-159, University of Wisconsin Press, Madison, Wisconsin, 1963. Zbl0121.08401MR146506
  7. [7] D. Gilbarg - L. Hörmander, Intermediate Schauder estimates, Arch. Rational Mech. Anal., 74 (1980), pp. 297-318. Zbl0454.35022MR588031
  8. [8] D. Gilbarg - N.S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin -Heidelberg-New York- Tokyo, 1983. Zbl0562.35001MR737190
  9. [9] E. Giusti, Boundary behavior of nonparametric minimal surface, Indiana Univ. Math. J., 22 (1975), pp. 435-444. Zbl0262.35020MR305253
  10. [10] M. Gruber, Harnack inequalities for solution of general second order parabolic equations and estimates of their Hölder constants, Math. Z., 185 (1984), pp. 23-43. Zbl0509.35044MR724044
  11. [11] M. Iannelli - G. Vergara Caffarelli, On the boundary value problem for surfaces of prescribed mean curvature, Sympos. Math., 14 (1974), pp. 473-480. Zbl0307.35044MR388220
  12. [12] A.V. Ivanov, The first boundary value problem for second order quasi-linear parabolic equations, Zap. Nauchn. Sem. Leningrad, Otdel Mat. Inst. Steklov.(LOMI), 38 (1973), pp. 10-32 [Russian]. English translation in J. Soviet Math., 8 (1977), pp. 354-372. Zbl0404.35054MR374677
  13. [13] A.V. Ivanov, Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order, Trudy Mat. Inst. Steklov., 160 (1982), pp. 1-285 [Russian]. English translation, Proc. Math. Inst. Steklov, 160 (1984), pp. 1-287. Zbl0544.35003MR702172
  14. [14] H. Jenkins - J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math., 229 (1968), pp. 170-187. Zbl0159.40204MR222467
  15. [15] N.V. Krylov, On the maximum principle for nonlinear parabolic and elliptic equations, Izv. Akad. Nauk SSSR, 42 (1978), pp. 1050-1062 [Russian]. English translation in Math. USSR Izv., 13 (1979), pp. 335-347. Zbl0421.35041MR513913
  16. [16] N.V. Krylov, Boundedly inhomogencous elliptic and parabolic equations in a domain, Izv. Akad. Nauk SSSR, 47 (1983), pp. 75-108 [Russian]. English translation in Math. USSR Izv., 22 (1984), pp. 67-98. Zbl0578.35024MR688919
  17. [17] N.V. Krylov, On estimates for the derivatives of solutions of nonlinear parabolic equations, Dokl. Akad. Nauk SSSR, 274 (1984), pp. 23-26 [Russian]. English translation in Soviet Math. Dokl., 29 (1984), pp. 14-17. Zbl0598.35057MR730158
  18. [18] O.A. Ladyzhenskaya - N.N. Ural'tseva, Linear and quasilinear elliptic solutions, Izd. Nauka, Moscow, 1964 [Russian]. English translation, Academic Press, New York, 1968; 2nd Russian ed., 1973. 
  19. [19] O.A. Ladyzhenskaja - V.A. Solonnikov - N.N. Ural'tseva, Linear and quasilinear equations of parabolic type, Izd. Nauka, Moscow, 1967 [Russian]. English translation, Amer. Math. Soc., Providence, R.I., 1968. Zbl0174.15403MR241822
  20. [20] A. Lichnewsky - R. Temam, Pseudosolutions of the time-dependent minima surface problem, J. Differential Equations, 30 (1978), pp. 340-364. Zbl0368.49016MR521858
  21. [21] G.M. Lieberman, The quasilinear Dirichlet problem with decreased regularity at the boundary, Comm. Partial Differential Equations, 6 (1981), pp. 437-497. Zbl0458.35039MR612553
  22. [22] G.M. Lieberman, Interior gradient estimates for nonuniformly parabolic equations, Indiana Univ. Math. J., 32 (1983), pp. 579-601. Zbl0491.35021MR703286
  23. [23] G.M. Lieberman, Regularized distance and its applications, Pacific J. Math., 117 (1985), pp. 329-352. Zbl0535.35028MR779924
  24. [23] G.M. Lieberman, Intermediate Schauder theory for second order parabolic equations. I: Estimates, J. Differential Equations, to appear. Zbl0553.35038MR840590
  25. [25] G.M. Lieberman, Intermediate Schauder theory for second order parabolic equations. II: Existence, uniqueness and regularity, J. Differential Equations, to appear. Zbl0553.35038MR840591
  26. [26] G.M. Lieberman, The Dirichlet problem for quasilinear elliptic equations with continuously differentiable boundary data, to appear. Zbl0589.35036MR818099
  27. [27] G.M. Lieberman - N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, to appear. Zbl0619.35047MR833695
  28. [28] P. Marcellini - K. Miller, Asymptotic growth for the parabolic equations of prescribed mean curvature, J. Differential Equations, 51 (1984), pp. 326-358. Zbl0545.35044MR735204
  29. [29] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser.A, 264 (1969), pp. 413-495. Zbl0181.38003MR282058
  30. [30] J. Serrin, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, in: Contributions to Nonlinear Functional Analysis, pp. 565-501, Academic Press, New York, 1971. Zbl0271.35004MR402274
  31. [31] L. Simon, Interior gradient bounds for nonuniformly elliptic equations, Indiana Univ. Math. J., 25 (1976), pp. 821-855. Zbl0346.35016MR412605
  32. [32] N.S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math., 21 (1968), pp. 205-226. Zbl0159.39303MR226168
  33. [33] N.S. Trudinger, The boundary gradient estimate for quasilinear elliptic and parabolic differential equations, Indiana Univ. Math. J., 21 (1972), pp. 657-670. Zbl0236.35022MR289942
  34. [34] N.S. Trudinger, Fully nonlinear uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc., 278 (1983), pp. 751-769. Zbl0518.35036MR701522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.