On the Hartogs-type series for harmonic functions on Hartogs domains in n × m , m ≥ 2

Ewa Ligocka

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 2, page 151-160
  • ISSN: 0066-2216

Abstract

top
We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.

How to cite

top

Ewa Ligocka. "On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2." Annales Polonici Mathematici 71.2 (1999): 151-160. <http://eudml.org/doc/262674>.

@article{EwaLigocka1999,
abstract = {We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.},
author = {Ewa Ligocka},
journal = {Annales Polonici Mathematici},
keywords = {harmonic functions; harmonic polynomials; spherical harmonics; conjugate harmonic functions; harmonic function; conjugate harmonic function},
language = {eng},
number = {2},
pages = {151-160},
title = {On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2},
url = {http://eudml.org/doc/262674},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Ewa Ligocka
TI - On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 2
SP - 151
EP - 160
AB - We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
LA - eng
KW - harmonic functions; harmonic polynomials; spherical harmonics; conjugate harmonic functions; harmonic function; conjugate harmonic function
UR - http://eudml.org/doc/262674
ER -

References

top
  1. [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1985. 
  2. [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. Zbl0765.31001
  3. [3] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, in: Potential Theory - ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, 233-241. Zbl0858.33008
  4. [4] J. Delsarte, Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr, Acta Math. 69 (1938), 259-317. Zbl0020.01902
  5. [5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), 152-158. Zbl0201.43302
  6. [6] J. L. Lions, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. France 84 (1956), 9-95. Zbl0075.10804
  7. [7] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. Zbl0139.29002
  8. [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
  9. [9] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,1), J. Math. Pures Appl. 60 (1981), 51-98. Zbl0416.44002
  10. [10] A. Weinstein, On a singular differential operator, Ann. Mat. Pura Appl. 49 (1960), 359-365. Zbl0094.06101
  11. [11] R. Z. Yeh, Analysis and applications of holomorphic functions in higher dimensions, Trans. Amer. Math. Soc. 345 (1994), 151-177. Zbl0808.30029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.