On the Hartogs-type series for harmonic functions on Hartogs domains in , m ≥ 2
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 2, page 151-160
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topEwa Ligocka. "On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2." Annales Polonici Mathematici 71.2 (1999): 151-160. <http://eudml.org/doc/262674>.
@article{EwaLigocka1999,
abstract = {We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.},
author = {Ewa Ligocka},
journal = {Annales Polonici Mathematici},
keywords = {harmonic functions; harmonic polynomials; spherical harmonics; conjugate harmonic functions; harmonic function; conjugate harmonic function},
language = {eng},
number = {2},
pages = {151-160},
title = {On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2},
url = {http://eudml.org/doc/262674},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Ewa Ligocka
TI - On the Hartogs-type series for harmonic functions on Hartogs domains in $ℝ^n × ℝ^m$, m ≥ 2
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 2
SP - 151
EP - 160
AB - We study series expansions for harmonic functions analogous to Hartogs series for holomorphic functions. We apply them to study conjugate harmonic functions and the space of square integrable harmonic functions.
LA - eng
KW - harmonic functions; harmonic polynomials; spherical harmonics; conjugate harmonic functions; harmonic function; conjugate harmonic function
UR - http://eudml.org/doc/262674
ER -
References
top- [1] N. Aronszajn, T. Creese and L. Lipkin, Polyharmonic Functions, Clarendon Press, Oxford, 1985.
- [2] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Springer, 1992. Zbl0765.31001
- [3] Z. Ben Nahia and N. Ben Salem, Spherical harmonics and applications associated with the Weinstein operator, in: Potential Theory - ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, 233-241. Zbl0858.33008
- [4] J. Delsarte, Une extension nouvelle de la théorie des fonctions presque-périodiques de Bohr, Acta Math. 69 (1938), 259-317. Zbl0020.01902
- [5] W. K. Hayman, Power series expansions for harmonic functions, Bull. London Math. Soc. 2 (1970), 152-158. Zbl0201.43302
- [6] J. L. Lions, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. France 84 (1956), 9-95. Zbl0075.10804
- [7] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. Zbl0139.29002
- [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [9] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur (0,1), J. Math. Pures Appl. 60 (1981), 51-98. Zbl0416.44002
- [10] A. Weinstein, On a singular differential operator, Ann. Mat. Pura Appl. 49 (1960), 359-365. Zbl0094.06101
- [11] R. Z. Yeh, Analysis and applications of holomorphic functions in higher dimensions, Trans. Amer. Math. Soc. 345 (1994), 151-177. Zbl0808.30029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.