Symmetries and integrals of motion in optimal control
Banach Center Publications (1995)
- Volume: 32, Issue: 1, page 379-393
- ISSN: 0137-6934
Access Full Article
topHow to cite
topSussmann, H.. "Symmetries and integrals of motion in optimal control." Banach Center Publications 32.1 (1995): 379-393. <http://eudml.org/doc/262687>.
@article{Sussmann1995,
author = {Sussmann, H.},
journal = {Banach Center Publications},
keywords = {integrals of optimal solutions; hamiltonian methods},
language = {eng},
number = {1},
pages = {379-393},
title = {Symmetries and integrals of motion in optimal control},
url = {http://eudml.org/doc/262687},
volume = {32},
year = {1995},
}
TY - JOUR
AU - Sussmann, H.
TI - Symmetries and integrals of motion in optimal control
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 379
EP - 393
LA - eng
KW - integrals of optimal solutions; hamiltonian methods
UR - http://eudml.org/doc/262687
ER -
References
top- [1] F. Albrecht, Topics in Control Theory, Springer, Berlin, 1968. Zbl0165.10604
- [2] L. D. Berkovitz, Optimal Control Theory, Springer, New York, 1974. Zbl0295.49001
- [3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. Zbl0582.49001
- [4] L. E. Dubins, On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents, Amer. J. Math. 79 (1957), 497-516. Zbl0098.35401
- [5] B. Kaskosz and S. Łojasiewicz Jr., A Maximum Principle for generalized control systems, Nonlinear Anal. 9 (1985), 109-130. Zbl0557.49012
- [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. Zbl0159.13201
- [7] A. A. Markov, Some examples of the solution of a special kind of problem in greatest and least quantities, Soobshch. Kharkovsk. Mat. Obshch. 1 (1887), 250-276 (in Russian).
- [8] L. S. Pontryagin, V. G. Boltyanskiĭ, R. V. Gamkrelidze and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, (translated by K. N. Trigoroff, L. W. Neustadt, editor), Wiley, 1962.
- [9] J. A. Reeds and L. A. Shepp, Optimal paths for a car that goes both forwards and backwards, Pacific J. Math. 145 (1990), 367-393.
- [10] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. Zbl0274.58002
- [11] H. J. Sussmann and G. Tang, Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control, SIAM J. Control, to appear.
- [12] H. J. Sussmann, Shortest paths with a prescribed bound on the curvature: the three-dimensional case, in preparation.
- [13] H. J. Sussmann, An introduction to the coordinate-free Maximum Principle, in preparation. Zbl0925.93135
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.