Pseudo orbit tracing property and fixed points
Annales Polonici Mathematici (1996)
- Volume: 63, Issue: 2, page 183-186
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. Zbl0127.13102
- [2] R. Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972), 323-331. Zbl0229.28011
- [3] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. Zbl0212.29201
- [4] M. Dateyama, Homeomorphisms with the pseudo orbit tracing property of the Cantor set, Tokyo J. Math. 6 (1983), 287-290. Zbl0533.58019
- [5] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976. Zbl0328.28008
- [6] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.
- [7] M. Misiurewicz, Diffeomorphisms without any measure with maximal entropy, Bull. Acad. Polon. Sci. 21 (1973), 903-910. Zbl0272.28013
- [8] A. Morimoto, The method of pseudo-orbit tracing and stability of dynamical systems, Seminar note 39, University of Tokyo, 1979 (in Japanese).
- [9] T. Shimomura, On a structure of discrete dynamical systems from the view point of chain components and some applications, Japan. J. Math. 15 (1989), 99-126. Zbl0691.54026