Abnormality of trajectory in sub-Riemannian structure

F. Pelletier; L. Bouche

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 301-317
  • ISSN: 0137-6934

Abstract

top
In the sub-Riemannian framework, we give geometric necessary and sufficient conditions for the existence of abnormal extremals of the Maximum Principle. We give relations between abnormality, C 1 -rigidity and length minimizing. In particular, in the case of three dimensional manifolds we show that, if there exist abnormal extremals, generically, they are locally length minimizing and in the case of four dimensional manifolds we exhibit abnormal extremals which are not C 1 -rigid and which can be minimizing or non minimizing according to different metrics.

How to cite

top

Pelletier, F., and Bouche, L.. "Abnormality of trajectory in sub-Riemannian structure." Banach Center Publications 32.1 (1995): 301-317. <http://eudml.org/doc/262701>.

@article{Pelletier1995,
abstract = {In the sub-Riemannian framework, we give geometric necessary and sufficient conditions for the existence of abnormal extremals of the Maximum Principle. We give relations between abnormality, $C^1$-rigidity and length minimizing. In particular, in the case of three dimensional manifolds we show that, if there exist abnormal extremals, generically, they are locally length minimizing and in the case of four dimensional manifolds we exhibit abnormal extremals which are not $C^1$-rigid and which can be minimizing or non minimizing according to different metrics.},
author = {Pelletier, F., Bouche, L.},
journal = {Banach Center Publications},
keywords = {rigidity; sub-Riemannian manifold; arc minimizing curves; abnormal extremal; Pontryagin maximum principle},
language = {eng},
number = {1},
pages = {301-317},
title = {Abnormality of trajectory in sub-Riemannian structure},
url = {http://eudml.org/doc/262701},
volume = {32},
year = {1995},
}

TY - JOUR
AU - Pelletier, F.
AU - Bouche, L.
TI - Abnormality of trajectory in sub-Riemannian structure
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 301
EP - 317
AB - In the sub-Riemannian framework, we give geometric necessary and sufficient conditions for the existence of abnormal extremals of the Maximum Principle. We give relations between abnormality, $C^1$-rigidity and length minimizing. In particular, in the case of three dimensional manifolds we show that, if there exist abnormal extremals, generically, they are locally length minimizing and in the case of four dimensional manifolds we exhibit abnormal extremals which are not $C^1$-rigid and which can be minimizing or non minimizing according to different metrics.
LA - eng
KW - rigidity; sub-Riemannian manifold; arc minimizing curves; abnormal extremal; Pontryagin maximum principle
UR - http://eudml.org/doc/262701
ER -

References

top
  1. [A] A. Agrachev, On abnormal geodesics in sub-Riemannian geometry, preprint. Zbl0866.58023
  2. [A-S] A. Agrachev and A. Sarychev, Strong minimality of abnormal geodesics for 2-distributions, J. Dynam. Control Systems, to appear. Zbl0951.53029
  3. [BA] G. Ben Arous, Noyau de la chaleur hypoelliptique et géométrie sous-riemannienne, to appear. Zbl0653.58042
  4. [Bi] J. M. Bismut, Large Deviations and the Malliavin Calculus, Progress in Math. 45, Birkhäuser, Basel, 1984. Zbl0537.35003
  5. [B-H] R. L. Bryant and L. Hsu, Rigid trajectory in systems with two linear controls, preprint, 1993. 
  6. [He] R. Hermann, On the accessibility problem of control theory, in: Proc. Sympos. Differential Equations, Colorado Springs, J. La Salle and S. Lefschetz (eds.), Academic Press, 1961. 
  7. [Hs] L. Hsu, Calculus of variations via Griffith's formalism, J. Differential Geom. 36, 1992, 551-585. 
  8. [J-P] B. Jakubczyk and F. Przytycki, Singularities of k-tuples of vector fields, Dissertationes Math. 213 (1984). Zbl0565.58007
  9. [K1] I. Kupka, Abnormal extremals, preprint, 1992. 
  10. [K2] I. Kupka, Caractérisations d'une courbe anormale, preprint. 
  11. [L] R. Léandre, Développements asymptotiques de la densité de diffusions dégénérées, to appear. 
  12. [L-S] W. Liu and H. J. Sussmann, Abnormal sub-Riemannian minimizers, preprint, 1992. Zbl0823.49026
  13. [Mar] J. Martinet, Sur les singularités de formes différentielles, Ann. Inst. Fourier (Grenoble) 20 (1) (1970), 95-178. Zbl0189.10001
  14. [May] A. Mayer, Begründung der Lagrangenschen Multiplicatorenmethode in der Variationsrechnung, Math. Ann. 26 (1886), 74. 
  15. [Mo] R. Montgomery, Geodesics which do not satisfy the geodesic equations, preprint, 1991. 
  16. [P-V 1] F. Pelletier et L. Valère Bouche, Le problème des géodésiques en géométrie sous-riemannienne singulière, C. R. Acad. Sci. Paris Sér. I 317 (1993), 71-76. 
  17. [P-V 2] F. Pelletier et L. Valère Bouche, Le problème des géodésiques, dérivation intrinsèque et utilisation de la théorie du contrôle en géométrie sous-riemannienne singulière, in: Table Ronde en l'Honneur de M. Berger, Luminy, 1992, to appear. 
  18. [St] R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom. 24 (1986), 221-263, and 30 (2) (1989), 595-596. Zbl0609.53021
  19. [Su] H. Sussmann, A cornucopia of abnormal sub-Riemannian minimizers, part 1: the four dimensional case, preprint, 1993. 
  20. [V] L. Valère Bouche, The geodesics' problem in sub-Riemannian geometry, about the R. Montgomery's example simplified by I. Kupka, les prépublications du L.A.M.A. (92-06), 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.