Some applications of a new integral formula for ̅ b

Moulay-Youssef Barkatou

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 1-24
  • ISSN: 0066-2216

Abstract

top
Let M be a smooth q-concave CR submanifold of codimension k in n . We solve locally the ̅ b -equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the ̅ b -operator on (0,q)-forms in the same spaces. We also obtain L p estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension theorem on 1-concave CR manifolds.

How to cite

top

Moulay-Youssef Barkatou. "Some applications of a new integral formula for $∂̅_{b}$." Annales Polonici Mathematici 70.1 (1998): 1-24. <http://eudml.org/doc/262710>.

@article{Moulay1998,
abstract = {Let M be a smooth q-concave CR submanifold of codimension k in $ℂ^n$. We solve locally the $∂̅_\{b\}$-equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the $∂̅_\{b\}$-operator on (0,q)-forms in the same spaces. We also obtain $L^p$ estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension theorem on 1-concave CR manifolds.},
author = {Moulay-Youssef Barkatou},
journal = {Annales Polonici Mathematici},
keywords = {CR manifold; tangential Cauchy-Riemann equations; q-convexity; -convexity; -concavity; 1-concave CR manifolds; integral formulas; Hartogs extension theorem},
language = {eng},
number = {1},
pages = {1-24},
title = {Some applications of a new integral formula for $∂̅_\{b\}$},
url = {http://eudml.org/doc/262710},
volume = {70},
year = {1998},
}

TY - JOUR
AU - Moulay-Youssef Barkatou
TI - Some applications of a new integral formula for $∂̅_{b}$
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 1
EP - 24
AB - Let M be a smooth q-concave CR submanifold of codimension k in $ℂ^n$. We solve locally the $∂̅_{b}$-equation on M for (0,r)-forms, 0 ≤ r ≤ q-1 or n-k-q+1 ≤ r ≤ n-k, with sharp interior estimates in Hölder spaces. We prove the optimal regularity of the $∂̅_{b}$-operator on (0,q)-forms in the same spaces. We also obtain $L^p$ estimates at top degree. We get a jump theorem for (0,r)-forms (r ≤ q-2 or r ≥ n-k-q+1) which are CR on a smooth hypersurface of M. We prove some generalizations of the Hartogs-Bochner-Henkin extension theorem on 1-concave CR manifolds.
LA - eng
KW - CR manifold; tangential Cauchy-Riemann equations; q-convexity; -convexity; -concavity; 1-concave CR manifolds; integral formulas; Hartogs extension theorem
UR - http://eudml.org/doc/262710
ER -

References

top
  1. [1] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions, Russian Math. Surveys 39 (1984), 41-118. 
  2. [2] R. A. Airapetjan and G. M. Henkin, Integral representations of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions II, Math. USSR-Sb. 55 (1986), no. 1, 91-111. 
  3. [3] A. Andreotti, G. Fredricks and M. Nacinovich, On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 365-404. Zbl0482.35061
  4. [4] M. Y. Barkatou, Régularité höldérienne du ̅ b sur les hypersurfaces 1-convexes-concaves, Math. Z. 221 (1996), 549-572. 
  5. [5] M. Y. Barkatou, thesis, Grenoble, 1994. 
  6. [6] M. Y. Barkatou, Formules locales de type Martinelli-Bochner-Koppelman sur des variétés CR, Math. Nachr., 1998. 
  7. [7] M. Y. Barkatou, Optimal regularity for ̅ b on CR manifolds, J. Geom. Anal., to appear. 
  8. [8] S. Berhanu and S. Chanillo, Hölder and L p estimates for a local solution of ̅ b at top degree, J. Funct. Anal. 114 (1993), 232-256. Zbl0798.35120
  9. [9] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex, CRC Press, Boca Raton, Fla., 1991. 
  10. [10] A. Boggess and M.-C. Shaw, A kernel approach to the local solvability of the tangential Cauchy-Riemann equations, Trans. Amer. Math. Soc. 289 (1985), 643-658. Zbl0579.35062
  11. [11] L. Ehrenpreis, A new proof and an extension of Hartogs' theorem, Bull. Amer. Math. Soc. 67 (1961), 507-509. 
  12. [12] B. Fischer, Kernels of Martinelli-Bochner type on hypersurfaces, Math. Z. 223 (1996), 155-183. Zbl0864.32003
  13. [13] R. Harvey and J. Polking, Fundamental solutions in complex analysis, Parts I and II, Duke Math. J. 46 (1979), 253-300 and 301-340. Zbl0441.35043
  14. [14] G. M. Henkin, Solutions des équations de Cauchy-Riemann tangentielles sur des variétés de Cauchy-Riemann q-convexes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 27-30. Zbl0472.32014
  15. [15] G. M. Henkin, The Hans Lewy equation and analysis of pseudoconvex manifolds, Russian Math. Surveys 32 (1977), 59-130. Zbl0382.35038
  16. [16] G. M. Henkin, The method of integral representations in complex analysis, in: Several Complex Variables I, Encyclopaedia Math. Sci. 7, Springer, 1990, 19-116. 
  17. [17] G. M. Henkin, The Hartogs-Bochner effect on CR manifolds, Soviet Math. Dokl. 29 (1984), 78-82. Zbl0601.32021
  18. [18] C. Laurent-Thiébaut, Résolution du ̅ b à support compact et phénomène de Hartogs-Bochner dans les variétés CR, in: Proc. Sympos. Pure Math. 52, Amer. Math. Soc., 1991, 239-249. Zbl0742.32014
  19. [19] C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-convex wedges, Ann. Inst. Fourier (Grenoble) 43 (1993), 383-436. Zbl0782.32014
  20. [20] C. Laurent-Thiébaut and J. Leiterer, Uniform estimates for the Cauchy-Riemann equation on q-concave wedges, Astérisque 217 (1993), 151-182. Zbl0796.32008
  21. [21] C. Laurent-Thiébaut and J. Leiterer, Andreotti-Grauert Theory on Hypersurfaces, Quaderni della Scuola Normale Superiore di Pisa, 1995. Zbl1161.32303
  22. [22] L. Ma and J. Michel, Local regularity for the tangential Cauchy-Riemann, J. Reine Angew. Math. 442 (1993), 63-90. Zbl0781.32022
  23. [23] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984. 
  24. [24] P. L. Polyakov, Sharp estimates for the operator ̅ M on a q-concave CR manifold, preprint. Zbl0909.32005
  25. [25] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Grad. Texts in Math. 108, Springer, 1986. Zbl0591.32002
  26. [26] R. M. Range and Y. T. Siu, Uniform estimates for the ∂̅-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325-354. Zbl0248.32015
  27. [27] M.-C. Shaw, Homotopy formulas for ̅ b in CR manifolds with mixed Levi signatures, Math. Z. 224 (1997), 113-136. 
  28. [28] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. Zbl0257.35040
  29. [29] F. Trèves, Homotopy formulas in the tangential Cauchy-Riemann complex, Mem. Amer. Math. Soc. 434 (1990). Zbl0707.35105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.