On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes

Aldo Andreotti; Gregory Fredricks; Mauro Nacinovich

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 3, page 365-404
  • ISSN: 0391-173X

How to cite

top

Andreotti, Aldo, Fredricks, Gregory, and Nacinovich, Mauro. "On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.3 (1981): 365-404. <http://eudml.org/doc/83863>.

@article{Andreotti1981,
author = {Andreotti, Aldo, Fredricks, Gregory, Nacinovich, Mauro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {tangential Cauchy-Riemann equations; boundary complex; Cauchy-Riemann operator; spectral sequence; Lewy unsolvable operator; Poincare lemma; Dolbeault complex},
language = {eng},
number = {3},
pages = {365-404},
publisher = {Scuola normale superiore},
title = {On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes},
url = {http://eudml.org/doc/83863},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Andreotti, Aldo
AU - Fredricks, Gregory
AU - Nacinovich, Mauro
TI - On the absence of Poincaré lemma in tangential Cauchy-Riemann complexes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 3
SP - 365
EP - 404
LA - eng
KW - tangential Cauchy-Riemann equations; boundary complex; Cauchy-Riemann operator; spectral sequence; Lewy unsolvable operator; Poincare lemma; Dolbeault complex
UR - http://eudml.org/doc/83863
ER -

References

top
  1. [0] A. Andreotti, Nine lectures in complex analysis, C.I.M.E.1973, Cremonese, Roma, 1974. Zbl0353.32021MR442262
  2. [1] A. Andreotti, Complexes of partial differential operators, Yale Univ. Press, 1975. Zbl0309.58020MR413192
  3. [2] A. Andreotti - C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 299-324. Zbl0256.32006MR460724
  4. [3] A. Andreotti - C.D. Hill, E. E. Levi convexity and the Hans Lewy problem, Part I and II, Ann. Scuola Norm. Sup. Pisa, 26 (1972), pp. 325-363 and pp. 747-806. Zbl0283.32013
  5. [4] A. Andreotti - M. Nacinovich, On analytic and C∞ Poincaré lemma, to appear in « Advances in Math. ». Zbl0471.58021
  6. [5] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
  7. [6] R. Godement, Theorie des faisceaux, Hermann, Paris, 1958. Zbl0080.16201MR102797
  8. [7] L. Hörmander, Linear Partial Differential Operators, Springer, Berlin, G. Hingen, Heidelberg, 1963. Zbl0108.09301MR161012
  9. [8] J.J. Kohn, Boundaries of complex manifolds. Proceedings Conference on Complex Analysis, Springer, Berlin, Heidelberg, New York, 1965, pp. 81-94. Zbl0166.36003MR175149
  10. [9] H. Lewy, An example of a smooth partial differential equation without solutions, Ann. of Math., 66 (1957), pp. 155-158. Zbl0078.08104MR88629
  11. [10] S. Łojasiewicz, Sur le problème de la division, Studia Math., 8 (1959), pp. 87-136. Zbl0115.10203
  12. [11] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press, 1966. Zbl0177.17902MR212575
  13. [12] V.P. Maslov, Operational methods, Mir publisher, Moscow, 1973. Zbl0449.47002MR512495
  14. [13] I. Naruki, Localization principle for differential complexes and its applications, R.I.M.S. 94, Kyoto (1971). Zbl0246.35072MR321143
  15. [14] H.K. Nickfrson, On the complex form of the Poincaré lemma, Proc. Amer. Math. Soc., 9 (1958), pp. 183-188. Zbl0091.36701MR95975
  16. [15] M. Sato - T. Kawai - N. Kashiwara, Microfunctions and pseudodifferential equations, Lecture Notes in Math. n. 287, pp. 265-529, SpringerBerlin, Heidelberg, New York, 1973. Zbl0277.46039MR420735
  17. [16] A. Sommerfeld, Partial differential equations in physics, Academic Press-New York, 1967. Zbl0034.35702MR29463
  18. [17] F. Treves, Study of a model in the theory of complexes of pseudodifferential operators, Ann. of Math. (2), 104 (1976), pp. 269-324. Zbl0354.35067MR426068

Citations in EuDML Documents

top
  1. Marco M. Peloso, Fulvio Ricci, Tangential Cauchy-Riemann equations on quadratic manifolds
  2. Jean-Marie Trépreau, Systèmes différentiels à caractéristiques simples et structures réelles-complexes
  3. Giuseppe Zampieri, Non-solvability of the tangential ∂̅-system in manifolds with constant Levi rank
  4. Giuseppe Zampieri, Non-solvability of the tangential ¯ M -systems
  5. Mauro Nacinovich, On the absence of Poincaré lemma for some systems of partial differential equations
  6. Judith Brinkschulte, C. Denson Hill, Mauro Nacinovich, The Poincaré lemma and local embeddability
  7. Moulay-Youssef Barkatou, Some applications of a new integral formula for ̅ b
  8. Judith Brinkschulte, C. Denson Hill, Mauro Nacinovich, Obstructions to generic embeddings
  9. Fabio Nicola, On the absence of the one-sided Poincaré lemma in Cauchy-Riemann manifolds
  10. C. Denson Hill, M. Nacinovich, Duality and distribution cohomology of C R manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.