A supplement to the Iomdin-Lê theorem for singularities with one-dimensional singular locus

Mihai Tibăr

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 411-419
  • ISSN: 0137-6934

Abstract

top
To a germ f : ( n , 0 ) ( , 0 ) with one-dimensional singular locus one associates series of isolated singularities f N : = f + l N , where l is a general linear function and N . We prove an attaching result of Iomdin-Lê type which compares the homotopy types of the Milnor fibres of f N and f. This is a refinement of the Iomdin-Lê theorem in the general setting of a singular underlying space.

How to cite

top

Tibăr, Mihai. "A supplement to the Iomdin-Lê theorem for singularities with one-dimensional singular locus." Banach Center Publications 33.1 (1996): 411-419. <http://eudml.org/doc/262734>.

@article{Tibăr1996,
abstract = {To a germ $f: (ℂ^n,0) → (ℂ,0)$ with one-dimensional singular locus one associates series of isolated singularities $f_N := f + l^N$, where l is a general linear function and $N ∈ $. We prove an attaching result of Iomdin-Lê type which compares the homotopy types of the Milnor fibres of $f_N$ and f. This is a refinement of the Iomdin-Lê theorem in the general setting of a singular underlying space.},
author = {Tibăr, Mihai},
journal = {Banach Center Publications},
keywords = {polar curve; Milnor fibre},
language = {eng},
number = {1},
pages = {411-419},
title = {A supplement to the Iomdin-Lê theorem for singularities with one-dimensional singular locus},
url = {http://eudml.org/doc/262734},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Tibăr, Mihai
TI - A supplement to the Iomdin-Lê theorem for singularities with one-dimensional singular locus
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 411
EP - 419
AB - To a germ $f: (ℂ^n,0) → (ℂ,0)$ with one-dimensional singular locus one associates series of isolated singularities $f_N := f + l^N$, where l is a general linear function and $N ∈ $. We prove an attaching result of Iomdin-Lê type which compares the homotopy types of the Milnor fibres of $f_N$ and f. This is a refinement of the Iomdin-Lê theorem in the general setting of a singular underlying space.
LA - eng
KW - polar curve; Milnor fibre
UR - http://eudml.org/doc/262734
ER -

References

top
  1. [Io] I. N. Iomdin, Variétés complexes avec singularités de dimension un, Sibirsk. Mat. Zh. 15 (1974), 1061-1082 (in Russian). 
  2. [Lê-1] D. T. Lê, Ensembles analytiques avec lieu singulier de dimension 1 (d'après Iomdine), in: Séminaire sur les singularités, Publ. Math. de l'Université Paris VII, 1980, 87-95. 
  3. [Lê-2] D. T. Lê, The geometry of the monodromy theorem, in: C. P. Ramanujam--a Tribute, Tata Institute, Springer-Verlag 1978. 
  4. [Lê-3] D. T. Lê, Some remarks on the relative monodromy, in: Real and Complex Singularities Oslo 1976, Sijthoff en Noordhoff, Alphen a.d. Rijn 1977, 397-403. 
  5. [Lê-4] D. T. Lê, Complex analytic functions with isolated singularities, J. Algebraic Geom., 1 (1992), 83-100. Zbl0777.32018
  6. [Si-1] D. Siersma, The monodromy of a series of hypersurface singularities, Comment. Math. Helv. 65 (1990), 181-197. Zbl0723.32015
  7. [Si-2] D. Siersma, Variation mappings on singularities with 1-dimensional singular locus, Topology 30 (1991), 445-469. Zbl0746.32014
  8. [Ti-1] M. Tibăr, Carrousel monodromy and Lefschetz number of singularities, Enseign. Math. 37 (1993), 233-247. Zbl0809.32010
  9. [Ti-2] M. Tibăr, Bouquet decomposition of the Milnor fibre, Topology 35 (1996), 227-242. Zbl0848.32031
  10. [Va] J.-P. Vannier, Familles à un paramètre de fonctions analytiques à lieu singulier de dimension un, C. R. Acad. Sci. Paris Sér. I 303 (1986), 367-370. Zbl0596.32014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.