Bounded projections in weighted function spaces in a generalized unit disc

A. H. Karapetyan

Annales Polonici Mathematici (1995)

  • Volume: 62, Issue: 3, page 193-218
  • ISSN: 0066-2216

Abstract

top
Let M m , n be the space of all complex m × n matrices. The generalized unit disc in M m , n is >br>    R m , n = Z M m , n : I ( m ) - Z Z * i s p o s i t i v e d e f i n i t e . Here I ( m ) M m , m is the unit matrix. If 1 ≤ p < ∞ and α > -1, then L α p ( R m , n ) is defined to be the space L p R m , n ; [ d e t ( I ( m ) - Z Z * ) ] α d μ m , n ( Z ) , where μ m , n is the Lebesgue measure in M m , n , and H α p ( R m , n ) L α p ( R m , n ) is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if R e β > ( α + 1 ) / p - 1 (for 1 < p < ∞) and Re β ≥ α (for p = 1), then     f ( ) = T m , n β ( f ) ( ) , R m , n , where T m , n β is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p < ∞, we find conditions on α and β for T m , n β to be a bounded projection of L α p ( R m , n ) onto H α p ( R m , n ) . Some applications of this result are given.

How to cite

top

A. H. Karapetyan. "Bounded projections in weighted function spaces in a generalized unit disc." Annales Polonici Mathematici 62.3 (1995): 193-218. <http://eudml.org/doc/262744>.

@article{A1995,
abstract = {Let $M_\{m,n\}$ be the space of all complex m × n matrices. The generalized unit disc in $M_\{m,n\}$ is >br>    $R_\{m,n\} = \{Z ∈ M_\{m,n\}: I^\{(m)\} - ZZ* is positive definite\}$. Here $I^\{(m)\} ∈ M_\{m,m\}$ is the unit matrix. If 1 ≤ p < ∞ and α > -1, then $L^\{p\}_\{α\}(R_\{m,n\})$ is defined to be the space $L^p\{R_\{m,n\}; [det(I^\{(m)\} - ZZ*)]^α dμ_\{m,n\}(Z)\}$, where $μ_\{m,n\}$ is the Lebesgue measure in $M_\{m,n\}$, and $H^p_α(R_\{m,n\}) ⊂ L^\{p\}_\{α\}(R_\{m,n\})$ is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if $Reβ > (α+1)/p -1$ (for 1 < p < ∞) and Re β ≥ α (for p = 1), then     $f()= T^\{β\}_\{m,n\}(f)(), ∈ R_\{m,n\}, $where $T^\{β\}_\{m,n\}$ is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p < ∞, we find conditions on α and β for $T^\{β\}_\{m,n\}$ to be a bounded projection of $L^p_α(R_\{m,n\})$ onto $H^p_α(R_\{m,n\})$. Some applications of this result are given.},
author = {A. H. Karapetyan},
journal = {Annales Polonici Mathematici},
keywords = {generalized unit disc; holomorphic and pluriharmonic functions; weighted spaces; integral representations; bounded integral operators; weighted function spaces; integral operator; bounded projection},
language = {eng},
number = {3},
pages = {193-218},
title = {Bounded projections in weighted function spaces in a generalized unit disc},
url = {http://eudml.org/doc/262744},
volume = {62},
year = {1995},
}

TY - JOUR
AU - A. H. Karapetyan
TI - Bounded projections in weighted function spaces in a generalized unit disc
JO - Annales Polonici Mathematici
PY - 1995
VL - 62
IS - 3
SP - 193
EP - 218
AB - Let $M_{m,n}$ be the space of all complex m × n matrices. The generalized unit disc in $M_{m,n}$ is >br>    $R_{m,n} = {Z ∈ M_{m,n}: I^{(m)} - ZZ* is positive definite}$. Here $I^{(m)} ∈ M_{m,m}$ is the unit matrix. If 1 ≤ p < ∞ and α > -1, then $L^{p}_{α}(R_{m,n})$ is defined to be the space $L^p{R_{m,n}; [det(I^{(m)} - ZZ*)]^α dμ_{m,n}(Z)}$, where $μ_{m,n}$ is the Lebesgue measure in $M_{m,n}$, and $H^p_α(R_{m,n}) ⊂ L^{p}_{α}(R_{m,n})$ is the subspace of holomorphic functions. In [8,9] M. M. Djrbashian and A. H. Karapetyan proved that, if $Reβ > (α+1)/p -1$ (for 1 < p < ∞) and Re β ≥ α (for p = 1), then     $f()= T^{β}_{m,n}(f)(), ∈ R_{m,n}, $where $T^{β}_{m,n}$ is the integral operator defined by (0.13)-(0.14). In the present paper, given 1 ≤ p < ∞, we find conditions on α and β for $T^{β}_{m,n}$ to be a bounded projection of $L^p_α(R_{m,n})$ onto $H^p_α(R_{m,n})$. Some applications of this result are given.
LA - eng
KW - generalized unit disc; holomorphic and pluriharmonic functions; weighted spaces; integral representations; bounded integral operators; weighted function spaces; integral operator; bounded projection
UR - http://eudml.org/doc/262744
ER -

References

top
  1. [1] M. Andersson, Formulas for the L²-minimal solutions of the ∂∂̅-equation in the unit ball of N , Math. Scand. 56 (1985), 43-69. 
  2. [2] A. E. Djrbashian and A. H. Karapetyan, Integral inequalities between conjugate pluriharmonic functions in multidimensional domains, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 23 (1988), 216-236 (in Russian). Zbl0662.31003
  3. [3] A. E. Djrbashian and F. A. Shamoian, Topics in the Theory of A α p Spaces, Teubner-Texte Math. 105, Teubner, Leipzig, 1988. 
  4. [4] M. M. Djrbashian, On the representability of certain classes of functions meromorphic in the unit disc, Dokl. Akad. Nauk Armyan. SSR 3 (1945), 3-9 (in Russian). 
  5. [5] M. M. Djrbashian, On the problem of representability of analytic functions, Soobshch. Inst. Mat. Mekh. Akad. Nauk Armyan. SSR 2 (1948), 3-40 (in Russian). 
  6. [6] M. M. Djrbashian, Survey of some achievements of Armenian mathematicians in the theory of integral representations and factorization of analytic functions, Mat. Vesnik 39 (1987), 263-282. Zbl0642.30026
  7. [7] M. M. Djrbashian, A brief survey of the results obtained by Armenian mathematicians in the field of factorization theory of meromorphic functions and its applications, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 23 (1988), 517-545 (in Russian). Zbl0678.01013
  8. [8] M. M. Djrbashian and A. H. Karapetyan, Integral representations in a generalized unit disc, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 24 (1989), 523-546 (in Russian). 
  9. [9] M. M. Djrbashian and A. H. Karapetyan, Integral representations in a generalized unit disc, Dokl. Akad. Nauk SSSR 312 (1990), 24-27 (in Russian). 
  10. [10] M. M. Djrbashian and A. H. Karapetyan, Integral representations in a generalized upper half-plane, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 25 (1990), 507-533 (in Russian). 
  11. [11] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. Zbl0297.47041
  12. [12] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Inostr. Liter., Moscow, 1959 (in Russian). 
  13. [13] A. H. Karapetyan, On computation of Cauchy type determinants, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 26 (1991), 343-350 (in Russian). 
  14. [14] F. D. Murnaghan, The Theory of Group Representations, Inostr. Liter., Moscow, 1950 (in Russian). Zbl0039.01903
  15. [15] W. Rudin, Function Theory in the Unit Ball of n , Springer, New York, 1980. Zbl0495.32001
  16. [16] M. Stoll, Mean value theorems for harmonic and holomorphic functions on bounded symmetric domains, J. Reine Angew. Math. 290 (1977), 191-198. Zbl0342.32003
  17. [17] H. Weyl, The Classical Groups, Inostr. Liter., Moscow, 1947 (in Russian). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.