# Contact geometry and CR-structures on spheres

Banach Center Publications (1995)

- Volume: 31, Issue: 1, page 99-113
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topBland, John, and Duchamp, Tom. "Contact geometry and CR-structures on spheres." Banach Center Publications 31.1 (1995): 99-113. <http://eudml.org/doc/262751>.

@article{Bland1995,

abstract = {A normal form for small CR-deformations of the standard CR-structure on the (2n+1)-sphere is presented. The space of normal forms is parameterized by a single function on the sphere. For n>1, the normal form is used to obtain explicit embeddings into $ℂ^\{n+1\}$. For n=1, the cohomological obstruction to embeddability is identified.},

author = {Bland, John, Duchamp, Tom},

journal = {Banach Center Publications},

keywords = {deformation theory; convex domains; moduli; Riemann maps; contact geometry; CR-structures},

language = {eng},

number = {1},

pages = {99-113},

title = {Contact geometry and CR-structures on spheres},

url = {http://eudml.org/doc/262751},

volume = {31},

year = {1995},

}

TY - JOUR

AU - Bland, John

AU - Duchamp, Tom

TI - Contact geometry and CR-structures on spheres

JO - Banach Center Publications

PY - 1995

VL - 31

IS - 1

SP - 99

EP - 113

AB - A normal form for small CR-deformations of the standard CR-structure on the (2n+1)-sphere is presented. The space of normal forms is parameterized by a single function on the sphere. For n>1, the normal form is used to obtain explicit embeddings into $ℂ^{n+1}$. For n=1, the cohomological obstruction to embeddability is identified.

LA - eng

KW - deformation theory; convex domains; moduli; Riemann maps; contact geometry; CR-structures

UR - http://eudml.org/doc/262751

ER -

## References

top- [B] J. Bland, Contact geometry and CR-structures on ${S}^{3}$, Acta Math. 172 (1994), 1-49. Zbl0814.32002
- [BD1] J. Bland and T. Duchamp, Moduli for pointed convex domains, Invent. Math. 104 (1991), 61-112. Zbl0731.32010
- [BD2] J. Bland and T. Duchamp, Basepoint dependence of moduli for convex domains, in preparation (1993).
- [BdM] L. Boutet de Monvel, Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 9 (1974/75), 1-13.
- [BE] D. M. Burns and C. L. Epstein, Embeddability for three dimensional CR-manifolds, J. Amer. Math. Soc. 3 (1990), 809-841. Zbl0736.32017
- [CL] J. H. Cheng and J. Lee, A local slice theorem for 3-dimensional CR-structures, preprint. Zbl0841.32004
- [FS] G. B. Folland and E. M. Stein, Estimates for the $\partial {\u0305}_{b}$-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522. Zbl0293.35012
- [G] J. Gray, Some global properties of contact structures, Ann. of Math. 69 (1959), 421-450. Zbl0092.39301
- [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
- [L2] L. Lempert, On three dimensional Cauchy-Riemann manifolds, J. Amer. Math. Soc. 5 (1992), 923-969. Zbl0781.32014
- [O] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, Berlin, 1994. Zbl0328.58005
- [R] H. Rossi, Attaching analytic spaces to an analytic space along a pseudoconvex boundary, in: Proceedings of the Conference on Complex Manifolds, A. Aeppli et al. (ed.), Springer, Berlin, 1965, 242-256.
- [W] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conf. Ser. in Math. 29, Amer. Math. Soc., Providence, 1977.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.