Initial value problems in elasticity

Rolf Leis

Banach Center Publications (1992)

  • Volume: 27, Issue: 1, page 277-294
  • ISSN: 0137-6934

How to cite


Leis, Rolf. "Initial value problems in elasticity." Banach Center Publications 27.1 (1992): 277-294. <>.

author = {Leis, Rolf},
journal = {Banach Center Publications},
keywords = {initial-boundary value problem; wave equation; anisotropic elastic media; wave propagation; cubic symmetry; existence; global smooth solutions},
language = {eng},
number = {1},
pages = {277-294},
title = {Initial value problems in elasticity},
url = {},
volume = {27},
year = {1992},

AU - Leis, Rolf
TI - Initial value problems in elasticity
JO - Banach Center Publications
PY - 1992
VL - 27
IS - 1
SP - 277
EP - 294
LA - eng
KW - initial-boundary value problem; wave equation; anisotropic elastic media; wave propagation; cubic symmetry; existence; global smooth solutions
UR -
ER -


  1. H. D. Alber and R. Leis, [1988], Initial-boundary value and scattering problems in mathematical physics, in: Lecture Notes in Math. 1357, Springer, 23-60. Zbl0687.35065
  2. A. L. Belopol'skiĭ and M. Sh. Birman, [1968], The existence of wave operators in the theory of scattering with a pair of spaces, Math. USSR-Izv. 2, 1117-1130. 
  3. J. Bergh and J. Löfström , Interpolation Spaces. An Introduction, Springer, Berlin. Zbl0344.46071
  4. D. Christodoulou, [1986], Global solutions of nonlinear hyperbolic equations for small data, Comm. Pure Appl. Math. 39, 267-287. Zbl0612.35090
  5. G. F. D. Duff, [1960], The Cauchy problem for elastic waves in an anisotropic medium, Philos. Trans. Roy. Soc. London Ser. A 252, 249-273. Zbl0103.42502
  6. D. M. Èĭdus, [1962], The principle of limiting absorption, Mat. Sb. 57 (99), 13-44 and AMS Transl. (2) 47 (1965), 157-191. 
  7. A. Erdélyi, [1956], Asymptotic Expansions, Dover, New York. Zbl0070.29002
  8. H. Freudenthal, [1939], Über ein Beugungsproblem aus der elektromagnetischen Lichttheorie, Compositio Math. 6, 221-227. Zbl0020.27104
  9. L. Hörmander, [1976], The boundary problems of physical geodesy, Arch. Rational Mech. Anal. 62, 1-52. Zbl0331.35020
  10. T. Ikebe, [1960], Eigenfunction expansions associated with the Schrödinger operators and their applications to scattering theory, ibid. 5, 1-34. Zbl0145.36902
  11. S. Jiang, [1988], Global existence and asymptotic behaviour of smooth solutions in one-dimensional nonlinear thermoelasticity, thesis, University of Bonn. 
  12. S. Jiang, [1990a], Far field behavior of solutions to the equations of nonlinear 1-d-thermoelasticity, Appl. Anal. 36, 25-35. Zbl0672.35011
  13. S. Jiang, [1990b], Numerical solution for the Cauchy Problem in nonlinear 1-d-thermoelasticity, Computing 44, 147-158. Zbl0701.73001
  14. S. Jiang and R. Racke, [1990], On some quasilinear hyperbolic-parabolic initial boundary value problems, Math. Methods Appl. Sci. 12, 315-339. Zbl0706.35098
  15. F. John, [1974], Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math. 27, 377-405. Zbl0302.35064
  16. F. John, [1976], Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions, ibid. 29, 649-681. 
  17. F. John, [1977], Finite amplitude waves in a homogeneous isotropic elastic solid, ibid. 30, 421-446. Zbl0404.73023
  18. F. John, [1981], Blow-up for quasi-linear wave equations in three space dimensions, ibid. 34, 29-51. Zbl0453.35060
  19. F. John, [1983], Formation of singularities in elastic waves, in: Trends and Applications of Pure Mathematics to Mechanics, Proceedings Palaiseau 1983, P. G. Ciarlet and M. Roseau (eds.), Lecture Notes in Phys. 195, Springer, 194-210. 
  20. F. John, [1986a], Long time effects of nonlinearity in second order hyperbolic equations, Comm. Pure Appl. Math. 39 (S), 139-148. 
  21. F. John, [1986b], Partial Differential Equations, Appl. Math. Sci. 1, Springer, New York. 
  22. F. John, [1987], Existence for large times of strict solutions of nonlinear wave equations in three space dimensions for small initial data, Comm. Pure Appl. Math. 40, 79-109. Zbl0662.35070
  23. F. John, [1988], Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, ibid. 41, 615-666. Zbl0635.35066
  24. F. John, [1990], Nonlinear Wave Equations, Formation of Singularities, Univ. Lecture Ser. No 2, Amer. Math. Soc. Providence, R.I. 
  25. K. Jörgens, [1961], Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77, 295-308. Zbl0111.09105
  26. T. Kato, [1970], Linear evolution equations of ``hyperbolic'' type, J. Fac. Sci. Univ. Tokyo 17, 241-258. Zbl0222.47011
  27. T. Kato, [1973], Linear evolution equations of ``hyperbolic'' type, II, J. Math. Soc. Japan 25, 648-666. Zbl0262.34048
  28. T. Kato, [1975a], Quasi-linear equations of evolution, with applications to partial differential equations, in: Lecture Notes in Math. 448, Springer, 25-70. 
  29. T. Kato, [1975b], The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58, 181-205. Zbl0343.35056
  30. T. Kato, [1976], Perturbation Theory for Linear Operators, Springer, Berlin. Zbl0342.47009
  31. T. Kato, [1985], Abstract Differential Equations and Nonlinear Mixed Problems, Fermi Lectures. Scuola Norm. Sup. Pisa. 
  32. S. Kawashima, [1983], Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, thesis, Kyoto University. 
  33. S. Klainerman, [1980], Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33, 43-101. Zbl0405.35056
  34. S. Klainerman, [1982], Long-time behavior of solutions to nonlinear evolution equations, Arch. Rational Mech. Anal. 78, 73-98. Zbl0502.35015
  35. S. Klainerman, [1985], Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure Appl. Math. 38, 321-332. Zbl0635.35059
  36. S. Klainerman, [1986], The null condition and global existence to nonlinear wave equations, Lectures in Appl. Math. 23, Amer. Math. Soc., 293-326. 
  37. S. Klainerman and G. Ponce, [1983], Global, small amplitude solutions to nonlinear evolution equations, Comm. Pure Appl. Math. 36, 133-141. Zbl0509.35009
  38. V. D. Kupradze, [1934], Über das ,,Ausstrahlungsprinzip`` von A. Sommerfeld, Dokl. Akad. Nauk SSSR 1, 55-58. 
  39. P. D. Lax and R. S. Phillips, [1989], Scattering Theory, Academic Press, Boston. 
  40. R. Leis, [1980], Außenraumaufgaben in der linearen Elastizitätstheorie, Math. Methods Appl. Sci. 2, 379-396. Zbl0448.35068
  41. R. Leis, [1981], Über das asymptotische Verhalten thermoelastischer Wellen im ℝ³, ibid. 3, 312-317. Zbl0457.73006
  42. R. Leis, [1986], Initial Boundary Value Problems in Mathematical Physics, Wiley and B. G. Teubner, Stuttgart. Zbl0599.35001
  43. R. Leis, [1989], Initial-boundary value problems in elasticity, in: Pitman Res. Notes Math. 216, 73-96. Zbl0686.73006
  44. O. Liess, [1989], Global existence for the nonlinear equations of crystal optics, Journ. ``Équ. aux Dér. Par.'', Exp. No. V, 11 pp., École Polyt., Palaiseau. Zbl0688.35091
  45. C. S. Morawetz, [1975], Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math. 28, 229-264. Zbl0304.35064
  46. C. S. Morawetz and D. Ludwig, [1968], An inequality for the reduced wave operator and the justification of geometrical optics, Comm. Pure Appl. Math. 21, 187-203. Zbl0157.18701
  47. C. S. Morawetz, W. Ralston and W. Strauss, [1977], Decay of solutions of the wave equation outside nontrapping obstacles, ibid. 30, 447-508 and 31, 795. Zbl0372.35008
  48. J. Moser, [1961], A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47, 1824-1831. Zbl0104.30503
  49. C. Müller, [1952], Zur Methode der Strahlungskapazität von H. Weyl, Math. Z. 56, 80-83. Zbl0046.10705
  50. C. Müller, [1954], On the behavior of the solutions of the differential equation Δu = F(x,u) in the neighborhood of a point, Comm. Pure Appl. Math. 7, 505-515. Zbl0056.32201
  51. D. B. Pearson, [1978], A generalization of the Birman trace theorem, J. Funct. Anal. 28, 182-186. Zbl0382.47006
  52. H. Pecher, [1976], p - Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen I, Math. Z. 150, 159-183. Zbl0318.35054
  53. R. Racke, [1988], Initial boundary value problems in thermoelasticity, in: Partial Differential Equations and Calculus of Variations, Lecture Notes in Math. 1357, Springer, 341-358. 
  54. R. Racke, [1990a], p - q estimates for solutions to the equations of linear thermoelasticity in exterior domains, Asymptotic Anal. 3, 105-132. Zbl0724.35019
  55. R. Racke, [1990b], A unique continuation principle and weak asymptotic behaviour of solutions to semilinear wave equations in exterior domains, Appl. Math. Letters 3, 53-56. Zbl0713.35014
  56. R. Racke, [1990c], Blow-up in nonlinear three-dimensional thermoelasticity, Math. Methods Appl. Sci. 12, 267-273. Zbl0705.35081
  57. R. Racke, [1990d], Decay rates for solutions of damped systems and generalized Fourier transforms, J. Reine Angew. Math. 412, 1-19. Zbl0718.35015
  58. R. Racke, [1990e], On the Cauchy problem in nonlinear 3-d-thermoelasticity, Math. Z. 203, 649-682. Zbl0701.73002
  59. R. Racke and G. Ponce, [1990], Global existence of solutions to the initial value problem for nonlinear thermoelasticity, J. Differential Equations 87, 70-83. Zbl0725.35065
  60. R. Racke and S. Zheng, [1991], Global existence of solutions to a fully nonlinear fourth-order parabolic equation in exterior domains, Nonlinear Anal., to appear. Zbl0762.35042
  61. M. Reed and B. Simon, [1972-79], Methods of Modern Mathematical Physics I - IV, Academic Press, New York. 
  62. F. Rellich, [1943], Über das asymptotische Verhalten der Lösungen von Δu + λu = 0 in unendlichen Gebieten, Jber. Deutsch. Math.-Verein. 53, 57-65. Zbl0028.16401
  63. J. Schauder, [1935], Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math. 24, 213-246. Zbl0011.35202
  64. Y. Shibata and Y. Tsutsumi, [1986], On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z. 191, 165-199. Zbl0592.35028
  65. Y. Shibata and Y. Tsutsumi, [1987], Local existence of solution for the initial boundary value problem of fully nonlinear wave equation, Nonlinear Anal. 11, 335-365. Zbl0651.35053
  66. M. Stoth, [1991], Globale klassische Lösungen der quasilinearen Elastizitätsgleichungen für kubisch elastische Medien im ℝ², SFB 256 - Preprint #157, Universität Bonn. 
  67. W. A. Strauss, [1989], Nonlinear Wave Equations, CBMS Regional Conf. Ser. in Math. 73, Amer. Math. Soc., Providence, R.I. 
  68. B. R. Vainberg, [1989], Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York. Zbl0743.35001
  69. I. N. Vekua, [1967], New Methods for Solving Elliptic Equations, North-Holland, Amsterdam. Zbl0146.34301
  70. M. Vishik and O. A. Ladyzhenskaya, [1956], Boundary value problems for partial differential equations and certain classes of operator equations, Uspekhi Mat. Nauk 11 (6,72), 41-97 and AMS Transl. (2) 10, 223-281. 
  71. H. Weyl, [1952], Kapazität von Strahlungsfeldern, Math. Z. 55, 187-198. Zbl0046.10706
  72. C. H. Wilcox, [1975], Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes in Math. 442, Springer, Berlin. Zbl0299.35002

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.