Regularity theorems for holonomic modules

Naofumi Honda

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 85-91
  • ISSN: 0137-6934

How to cite

top

Honda, Naofumi. "Regularity theorems for holonomic modules." Banach Center Publications 33.1 (1996): 85-91. <http://eudml.org/doc/262770>.

@article{Honda1996,
author = {Honda, Naofumi},
journal = {Banach Center Publications},
keywords = {holomorphic systems; regularity theorems; irregular singular holonomic modules},
language = {eng},
number = {1},
pages = {85-91},
title = {Regularity theorems for holonomic modules},
url = {http://eudml.org/doc/262770},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Honda, Naofumi
TI - Regularity theorems for holonomic modules
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 85
EP - 91
LA - eng
KW - holomorphic systems; regularity theorems; irregular singular holonomic modules
UR - http://eudml.org/doc/262770
ER -

References

top
  1. [1] E. Andronikof, Microlocalisation tempérée des distributions et des fonctions holomorphes I, C. R. Acad. Sci. Paris 303 (1986), 347-350. Zbl0602.32003
  2. [2] E. Andronikof, Microlocalisation tempérée des distributions et des fonctions holomorphes II, ibid. 304 (1987), 511-514. Zbl0633.32010
  3. [3] E. Andronikof, On the C -singularities of regular holonomic distributions, Ann. Inst. Fourier (Grenoble) 42 (1992), 695-704. Zbl0756.58046
  4. [4] N. Honda, On the reconstruction theorem of holonomic modules in Gevrey classes, Publ. R.I.M.S. 27 (1991), 923-943. Zbl0807.35005
  5. [5] N. Honda, Microlocalization in Gevrey classes, in preparation. 
  6. [6] N. Honda, Regularity theorems for holonomic modules, in preparation. Zbl0892.32025
  7. [7] M. Kashiwara, On the maximally overdetermined systems of linear differential equations, I, Publ. R.I.M.S. 10 (1975), 563-579. Zbl0313.58019
  8. [8] M. Kashiwara, On the holonomic systems of linear differential equations, II, Invent. Math. 49 (1978), 121-135. Zbl0401.32005
  9. [9] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. R.I.M.S. 20 (1984), 319-365. Zbl0566.32023
  10. [10] M. Kashiwara and T. Kawai, On the holonomic systems of microdifferential equations, III, ibid. 17 (1981), 813-979. Zbl0505.58033
  11. [11] M. Kashiwara and T. Oshima, Systems of differential equations with regular singularities and their boundary value problems, Ann. of Math. 106 (1977), 145-200. Zbl0358.35073
  12. [12] M. Kashiwara and P. Schapira, Microlocal study of sheaves, Astérisque 128 (1985). Zbl0589.32019
  13. [13] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren Math. Wiss. 292, Springer, 1990. 
  14. [14] H. Komatsu, On the regularity of hyperfunction solutions of linear ordinary differential equations with real analytic coefficients, J. Fac. Sci. Univ. Tokyo Sec. IA 20 (1973), 107-119. Zbl0266.34006
  15. [15] Y. Laurent, Théorie de la deuxième microlocalisation dans le domaine complexe, Progr. Math. 53, Birkhäuser, 1985. Zbl0561.32013
  16. [16] B. Malgrange, Sur les points singuliers des équations différentielles, Enseign. Math. 20 (1974), 147-176. Zbl0299.34011
  17. [17] J.-P. Ramis, Devissage Gevrey, Astérisque 59-60 (1978), 173-204. 
  18. [18] M. Sato, T. Kawai and M. Kashiwara, Hyperfunctions and pseudodifferential equations, in: Lecture Notes in Math. 287, Springer, 1973, 265-529. 
  19. [19] P. Schapira, Microdifferential Systems in the Complex Domain, Grundlehren Math. Wiss. 269, Springer, 1985. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.