On the C -singularities of regular holonomic distributions

Emmanuel Andronikof

Annales de l'institut Fourier (1992)

  • Volume: 42, Issue: 3, page 695-705
  • ISSN: 0373-0956

Abstract

top
The analytic and 𝒞 wave-front sets of a distribution which is a solution of a regular holonomic differential system are shown to coincide. More generally, we give comparison theorems for solutions of a regular holonomic system of microdifferential equations in various spaces of microfunctions, as a simple extension of a result of Kashiwara.

How to cite

top

Andronikof, Emmanuel. "On the $C^\infty $-singularities of regular holonomic distributions." Annales de l'institut Fourier 42.3 (1992): 695-705. <http://eudml.org/doc/74970>.

@article{Andronikof1992,
abstract = {The analytic and $\{\cal C\}^\infty $ wave-front sets of a distribution which is a solution of a regular holonomic differential system are shown to coincide. More generally, we give comparison theorems for solutions of a regular holonomic system of microdifferential equations in various spaces of microfunctions, as a simple extension of a result of Kashiwara.},
author = {Andronikof, Emmanuel},
journal = {Annales de l'institut Fourier},
keywords = {wave-front sets; regular holonomic module; distribution},
language = {eng},
number = {3},
pages = {695-705},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the $C^\infty $-singularities of regular holonomic distributions},
url = {http://eudml.org/doc/74970},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Andronikof, Emmanuel
TI - On the $C^\infty $-singularities of regular holonomic distributions
JO - Annales de l'institut Fourier
PY - 1992
PB - Association des Annales de l'Institut Fourier
VL - 42
IS - 3
SP - 695
EP - 705
AB - The analytic and ${\cal C}^\infty $ wave-front sets of a distribution which is a solution of a regular holonomic differential system are shown to coincide. More generally, we give comparison theorems for solutions of a regular holonomic system of microdifferential equations in various spaces of microfunctions, as a simple extension of a result of Kashiwara.
LA - eng
KW - wave-front sets; regular holonomic module; distribution
UR - http://eudml.org/doc/74970
ER -

References

top
  1. [A1] E. ANDRONIKOF, Microlocalisation tempérée. Application aux distributions holonômes sur une variété complexe. Sém. Eq. aux Dériv. Part. École Polytechnique, exposé 2, 20 octobre 1987. Zbl0655.35005
  2. [A2] E. ANDRONIKOF, Microlocalisation tempérée des distributions et des fonctions holomorphes, I and II, C.R. Acad. Sci., t. 303 (1986), 347-350 & t. 304, n° 17 (1987), 511-514 & Thèse d'État Univ. Paris-Nord (1987). Zbl0602.32003MR88a:58186
  3. [BS] G. BENGEL, P. SCHAPIRA, Décomposition microlocale analytique des distributions, Ann. Inst. Fourier Grenoble, t. 29, fasc. 3 (1979), 101-124. Zbl0396.46039MR81k:46050
  4. [Bj] J.-E. BJÖRK, Book to appear at Kluwer. 
  5. [Bo] J.-M. BONY, Propagation des singularités différentiables pour des opérateurs à coefficients analytiques, Astérisque, 34-35 (1976), 43-91. Zbl0344.35075MR57 #14065
  6. [HS] N. HONDA, P. SCHAPIRA, A vanishing theorem for holonomic modules with positive characteristic varieties. Pub. R.I.M.S. Kyoto Univ., 26 (1990), 529-534. Zbl0728.58036MR91i:58137
  7. [H1] L. HÖRMANDER, The wave-front set of the fundamental solution of a hyperbolic operator with double characteristics. Preprint Lund Univ., (1990). 
  8. [H2] L. HÖRMANDER, The Analysis of Linear Partial Differential Operators, Vol. I and III, Grundlehren der math. Wiss, 256 and 274, Springer, (1985). Zbl0601.35001
  9. [K] M. KASHIWARA, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, 20 (1984), 319-365. Zbl0566.32023MR86j:58142
  10. [KK] M. KASHIWARA, T. KAWAI, On holonomic systems of micro-differential equations III, systems with regular singularities, Publ. RIMS, 17 (1981), 813-979. Zbl0505.58033MR83e:58085
  11. [KS] M. KASHIWARA, P. SCHAPIRA, Sheaves on Manifolds. Grundlehren der math. Wiss., 292, Springer, (1990). Zbl0709.18001
  12. [MS] A. MELIN, J. SJOSTRAND, Fourier integral operators with complex valued phase functions, Lecture Notes in Math., 459, Springer (1975), 120-223. Zbl0306.42007MR55 #4290
  13. [SKK] M. SATO, M. KASHIWARA, T. KAWAI, Hyperfunctions and pseudo-differential equations. Lecture Note in Math, 287, Springer (1973), 265-529. Zbl0277.46039MR54 #8747
  14. [S] P. SCHAPIRA, Conditions de positivité dans une variété symplectique complexe. Application à l'étude des microfonctions. Ann. Sc. Ec. Norm. Sup., 14 (1981), 121-139. Zbl0473.58022MR82i:58067
  15. [Z] A. I. ZASLAVSKI'I, Holonomic systems with regular singularities and wavefront sets of Feynmann integrals. (Russian.) Funkt. Anal. i Prilozh, 22 (1988), 71-72. Zbl0669.35104MR89k:58268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.