Multiplicity and the Łojasiewicz exponent

S. Spodzieja

Annales Polonici Mathematici (2000)

  • Volume: 73, Issue: 3, page 257-267
  • ISSN: 0066-2216

Abstract

top
We give a formula for the multiplicity of a holomorphic mapping f : n Ω m , m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.

How to cite

top

Spodzieja, S.. "Multiplicity and the Łojasiewicz exponent." Annales Polonici Mathematici 73.3 (2000): 257-267. <http://eudml.org/doc/262772>.

@article{Spodzieja2000,
abstract = {We give a formula for the multiplicity of a holomorphic mapping $f: ℂ^\{n\} ⊃ Ω → ℂ^\{m\}$, m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.},
author = {Spodzieja, S.},
journal = {Annales Polonici Mathematici},
keywords = {local Łojasiewicz exponent; holomorphic mapping; multiplicity},
language = {eng},
number = {3},
pages = {257-267},
title = {Multiplicity and the Łojasiewicz exponent},
url = {http://eudml.org/doc/262772},
volume = {73},
year = {2000},
}

TY - JOUR
AU - Spodzieja, S.
TI - Multiplicity and the Łojasiewicz exponent
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 3
SP - 257
EP - 267
AB - We give a formula for the multiplicity of a holomorphic mapping $f: ℂ^{n} ⊃ Ω → ℂ^{m}$, m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.
LA - eng
KW - local Łojasiewicz exponent; holomorphic mapping; multiplicity
UR - http://eudml.org/doc/262772
ER -

References

top
  1. [ATW] R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36. Zbl0796.32006
  2. [C] J. Chądzyński, On the order of isolated zero of a holomorphic mapping, Bull. Polish Acad. Sci. Math. 31 (1983), 121-128. Zbl0554.32005
  3. [CL] S. H. Chang and Y. C. Lu, On C⁰-sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880. Zbl0258.58004
  4. [D'A] J. D'Angelo, Real hypersurfaces, orders of contact and applications, Ann. of Math. (2) 115 (1982), 615-637. 
  5. [D] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204. Zbl0157.40502
  6. [KL] T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310. Zbl0378.32001
  7. [LJT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974. 
  8. [Ł₁] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette, 1965. 
  9. [Ł₂] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991. 
  10. [M] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer, Berlin, 1976. Zbl0356.14002
  11. [P₁] A. Płoski, Sur l'exposant d'une application analytique I, Bull. Polish Acad. Sci. Math. 32 (1984), 669-673. Zbl0579.32043
  12. [P₂] A. Płoski, Sur l'exposant d'une application analytique II, ibid. 33 (1985), 123-127. Zbl0586.32032
  13. [P₃] A. Płoski, Multiplicity and the Łojasiewicz exponent, in: Banach Center Publ. 20, PWN, 1988, 353-364. Zbl0661.32018
  14. [SV] J. Stückrad and W. Vogel, An algebraic approach to the intersection theory, in: The Curves Seminar at Queen's, Vol. II, Queen's Papers Pure Appl. Math. 61, Kingston, Ont., 1982, 1-32. 
  15. [Te] B. Teissier, Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292. Zbl0446.32002
  16. [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191. Zbl0911.32018
  17. [TW] P. Tworzewski and T. Winiarski, Cycles of zeros of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101. Zbl0759.32015
  18. [V] W. Vogel, Lectures on Results on Bézout's Theorem, notes by D. P. Patil, Lecture Notes, Tata Inst. Fund. Res. Bombay, Springer, 1984. Zbl0553.14022
  19. [W] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549. Zbl0152.27701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.