Multiplicity and the Łojasiewicz exponent
Annales Polonici Mathematici (2000)
- Volume: 73, Issue: 3, page 257-267
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topSpodzieja, S.. "Multiplicity and the Łojasiewicz exponent." Annales Polonici Mathematici 73.3 (2000): 257-267. <http://eudml.org/doc/262772>.
@article{Spodzieja2000,
abstract = {We give a formula for the multiplicity of a holomorphic mapping $f: ℂ^\{n\} ⊃ Ω → ℂ^\{m\}$, m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.},
author = {Spodzieja, S.},
journal = {Annales Polonici Mathematici},
keywords = {local Łojasiewicz exponent; holomorphic mapping; multiplicity},
language = {eng},
number = {3},
pages = {257-267},
title = {Multiplicity and the Łojasiewicz exponent},
url = {http://eudml.org/doc/262772},
volume = {73},
year = {2000},
}
TY - JOUR
AU - Spodzieja, S.
TI - Multiplicity and the Łojasiewicz exponent
JO - Annales Polonici Mathematici
PY - 2000
VL - 73
IS - 3
SP - 257
EP - 267
AB - We give a formula for the multiplicity of a holomorphic mapping $f: ℂ^{n} ⊃ Ω → ℂ^{m}$, m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.
LA - eng
KW - local Łojasiewicz exponent; holomorphic mapping; multiplicity
UR - http://eudml.org/doc/262772
ER -
References
top- [ATW] R. Achilles, P. Tworzewski and T. Winiarski, On improper isolated intersection in complex analytic geometry, Ann. Polon. Math. 51 (1990), 21-36. Zbl0796.32006
- [C] J. Chądzyński, On the order of isolated zero of a holomorphic mapping, Bull. Polish Acad. Sci. Math. 31 (1983), 121-128. Zbl0554.32005
- [CL] S. H. Chang and Y. C. Lu, On C⁰-sufficiency of complex jets, Canad. J. Math. 25 (1973), 874-880. Zbl0258.58004
- [D'A] J. D'Angelo, Real hypersurfaces, orders of contact and applications, Ann. of Math. (2) 115 (1982), 615-637.
- [D] R. N. Draper, Intersection theory in analytic geometry, Math. Ann. 180 (1969), 175-204. Zbl0157.40502
- [KL] T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), 299-310. Zbl0378.32001
- [LJT] M. Lejeune-Jalabert et B. Teissier, Clôture intégrale des idéaux et equisingularité, Centre de Mathématiques, École Polytechnique, 1974.
- [Ł₁] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette, 1965.
- [Ł₂] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, Basel, 1991.
- [M] D. Mumford, Algebraic Geometry I. Complex Projective Varieties, Springer, Berlin, 1976. Zbl0356.14002
- [P₁] A. Płoski, Sur l'exposant d'une application analytique I, Bull. Polish Acad. Sci. Math. 32 (1984), 669-673. Zbl0579.32043
- [P₂] A. Płoski, Sur l'exposant d'une application analytique II, ibid. 33 (1985), 123-127. Zbl0586.32032
- [P₃] A. Płoski, Multiplicity and the Łojasiewicz exponent, in: Banach Center Publ. 20, PWN, 1988, 353-364. Zbl0661.32018
- [SV] J. Stückrad and W. Vogel, An algebraic approach to the intersection theory, in: The Curves Seminar at Queen's, Vol. II, Queen's Papers Pure Appl. Math. 61, Kingston, Ont., 1982, 1-32.
- [Te] B. Teissier, Variétés polaires. I. Invariants polaires des singularités d'hypersurfaces, Invent. Math. 40 (1977), 267-292. Zbl0446.32002
- [Tw] P. Tworzewski, Intersection theory in complex analytic geometry, Ann. Polon. Math. 62 (1995), 177-191. Zbl0911.32018
- [TW] P. Tworzewski and T. Winiarski, Cycles of zeros of holomorphic mappings, Bull. Polish Acad. Sci. Math. 37 (1989), 95-101. Zbl0759.32015
- [V] W. Vogel, Lectures on Results on Bézout's Theorem, notes by D. P. Patil, Lecture Notes, Tata Inst. Fund. Res. Bombay, Springer, 1984. Zbl0553.14022
- [W] H. Whitney, Tangents to an analytic variety, Ann. of Math. 81 (1965), 496-549. Zbl0152.27701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.