Approximation diophantienne dans les corps de séries en plusieurs variables
Nous montrons ici un théorème d’approximation diophantienne entre le corps des séries formelles en plusieurs variables et son complété pour la topologie de Krull.
Nous montrons ici un théorème d’approximation diophantienne entre le corps des séries formelles en plusieurs variables et son complété pour la topologie de Krull.
Notre étude porte sur une catégorie de structures de Poisson singulières holomorphes au voisinage de et admettant une forme normale formelle polynomiale i.e. un nombre fini d’invariants formels. Les séries normalisantes sont divergentes en général. On montre l’existence de transformations normalisantes holomorphes sur des domaines sectoriels de la forme , où est un monôme associé au problème. Il suit une classification analytique.
We consider a contractible closure of the space of Legendrian knots in the standard contact 3-space. We show that in this context the space of finite-type complex-valued invariants of Legendrian knots is isomorphic to that of framed knots in with an extra order 1 generator (Maslov index) added.
It is well-known that if r is a rational number from [-1,0), then there is no polynomial f in two complex variables and a fiber such that r is the Łojasiewicz exponent of grad(f) near the fiber . We show that this does not remain true if we consider polynomials in real variables. More exactly, we give examples showing that any rational number can be the Łojasiewicz exponent near the fiber of the gradient of some polynomial in real variables. The second main result of the paper is the formula...
For every polynomial F in two complex variables we define the Łojasiewicz exponents measuring the growth of the gradient ∇F on the branches centered at points p at infinity such that F approaches t along γ. We calculate the exponents in terms of the local invariants of singularities of the pencil of projective curves associated with F.
We give a formula for the multiplicity of a holomorphic mapping , m > n, at an isolated zero, in terms of the degree of an analytic set at a point and the degree of a branched covering. We show that calculations of this multiplicity can be reduced to the case when m = n. We obtain an analogous result for the local Łojasiewicz exponent.
We let be the completion of the field of formal Puiseux series and study polynomials with coefficients in as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in . We show that cubic polynomial dynamics over and are intimately related. More precisely, we establish that some elements of naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal...