# Time minimal synthesis with target of codimension one under generic conditions

Banach Center Publications (1995)

- Volume: 32, Issue: 1, page 95-109
- ISSN: 0137-6934

## Access Full Article

top## Abstract

top## How to cite

topBonnard, B., and Pelletier, M.. "Time minimal synthesis with target of codimension one under generic conditions." Banach Center Publications 32.1 (1995): 95-109. <http://eudml.org/doc/262776>.

@article{Bonnard1995,

abstract = {We consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraint belonging to a manifold of codimension one, for systems of the form $v̇ = X + uY$, $|u| ≤ 1$ and $v ∈ R^2$ or $R^3$, under generic assumptions. The analysis is localized near the terminal manifold and is developed to control a class of chemical systems.},

author = {Bonnard, B., Pelletier, M.},

journal = {Banach Center Publications},

keywords = {time minimal synthesis; optimal closed loop control; time minimal control problem},

language = {eng},

number = {1},

pages = {95-109},

title = {Time minimal synthesis with target of codimension one under generic conditions},

url = {http://eudml.org/doc/262776},

volume = {32},

year = {1995},

}

TY - JOUR

AU - Bonnard, B.

AU - Pelletier, M.

TI - Time minimal synthesis with target of codimension one under generic conditions

JO - Banach Center Publications

PY - 1995

VL - 32

IS - 1

SP - 95

EP - 109

AB - We consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraint belonging to a manifold of codimension one, for systems of the form $v̇ = X + uY$, $|u| ≤ 1$ and $v ∈ R^2$ or $R^3$, under generic assumptions. The analysis is localized near the terminal manifold and is developed to control a class of chemical systems.

LA - eng

KW - time minimal synthesis; optimal closed loop control; time minimal control problem

UR - http://eudml.org/doc/262776

ER -

## References

top- [1] R. Benedetti and J. J. Risler, Real Algebraic and Semi-Algebraic Sets, Hermann, Paris, 1990. Zbl0694.14006
- [2] B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, Forum Math. 5 (1993), 111-159.
- [3] B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, to appear in SIAM J. Control Optim. Zbl0882.49024
- [4] B. Bonnard and M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, preprint, Laboratoire de Topologie de Dijon, 1992, to appear in JMSEC.
- [5] I. Kupka, Geometric theory of extremals in optimal control problems. I. The fold and Maxwell cases, Trans. Amer. Math. Soc. 299 (1977), 225-243. Zbl0606.49016
- [6] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, Wiley, New York, 1967. Zbl0159.13201
- [7] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), 237-274. Zbl36.0669.01
- [8] H. Schättler, The local structure of time optimal trajectories under generic conditions, SIAM J. Control Optim. 26 (1988), 899-918. Zbl0656.49007
- [9] H. J. Sussmann, The structure of time optimal trajectories for single-input systems in the plane: the ${C}^{\infty}$ non singular case, ibid. 25 (1987), 433-465.
- [10] H. J. Sussmann, Regular synthesis for time optimal control single-input real analytic systems in the plane, ibid. 25 (1987), 1145-1162. Zbl0701.93035

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.