Classification générique de synthèses temps minimales avec cible de codimension un et applications
B. Bonnard; G. Launay; M. Pelletier
Annales de l'I.H.P. Analyse non linéaire (1997)
- Volume: 14, Issue: 1, page 55-102
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBonnard, B., Launay, G., and Pelletier, M.. "Classification générique de synthèses temps minimales avec cible de codimension un et applications." Annales de l'I.H.P. Analyse non linéaire 14.1 (1997): 55-102. <http://eudml.org/doc/78406>.
@article{Bonnard1997,
author = {Bonnard, B., Launay, G., Pelletier, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal time; optimal synthesis; chemical systems; optimal closed loop control},
language = {fre},
number = {1},
pages = {55-102},
publisher = {Gauthier-Villars},
title = {Classification générique de synthèses temps minimales avec cible de codimension un et applications},
url = {http://eudml.org/doc/78406},
volume = {14},
year = {1997},
}
TY - JOUR
AU - Bonnard, B.
AU - Launay, G.
AU - Pelletier, M.
TI - Classification générique de synthèses temps minimales avec cible de codimension un et applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 1
SP - 55
EP - 102
LA - fre
KW - minimal time; optimal synthesis; chemical systems; optimal closed loop control
UR - http://eudml.org/doc/78406
ER -
References
top- [1] V.I. Arnold, S.M. Goussein Zadé et A.N. Varchenko, Singularities of differentiable maps, Tome 1, Nauka, Moscou, 1981. Zbl1297.32001
- [2] R. Benedetti et J.J. Risler, Real algebraic and semi algebraic sets, Hermann, Paris, 1990. Zbl0694.14006MR1070358
- [3] B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, mathematicum, vol. 5, 1993, pp. 111-159. Zbl0779.49025MR1205250
- [4] B. Bonnard et J. De Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. on Control and Opt., vol. 33, n° 5, sept. 1995, pp. 1279-1311. Zbl0882.49024MR1348110
- [5] B. Bonnard et M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, summary in J. of Mathematical systems, estimation and control, vol. 5, n° 3, 1995. Zbl0852.49014MR1651819
- [6] B. Bonnard et M. Pelletier, Time minimal synthesis with target of codimension one under generic conditions, Pub. Banach Center, vol. 32, 1995. Zbl0971.49009
- [7] I. Ekeland, Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, n° 47, 1977, pp. 1-32. Zbl0447.49015MR493584
- [8] M. Feinberg, Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, vol. 42, 10, 1987, pp. 2229-2268.
- [9] H. Hermes, Lie algebras of vector fields and local approximation of attainable sets, SIAM J. on Control and Opt., vol. 16, 1978, pp. 715-727. Zbl0388.49025MR493664
- [10] C.G. Hill, An introduction to chemical engineering kinetics and reactor design, John Wiley, New York, 1977.
- [11] W. Klingenberg, A course in differential geometry, Graduate texts in Mathematics, Springer Verlag, New York, 1978. Zbl0366.53001MR474045
- [12] F. Klok, Broken solutions of homogeneous variational problems, J. of Diff. Equ., vol. 55, 1984, pp. 101-134. Zbl0507.58022MR759829
- [13] S. Kobayashi, On conjugate and cut loci, in Studies in global geometry, vol. 4, S. S. Chern ed., Englewood Cliffs, Prentice Hall, NJ, 1967. MR212737
- [14] A.J. Krener, The higher-order maximal principle and its applications to singular extremals, SIAM J. on Control and Opt., vol. 15, 1977, pp. 256-293. Zbl0354.49008MR433288
- [15] I. Kupka, Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, TAMS, vol. 299, 1973, pp. 225-243. Zbl0606.49016MR869409
- [16] G. Launay et M. Pelletier, Synthèse optimale avec cible de codimension un : le cas d'arrivée tangentielle, A paraître.
- [17] E.B. Lee et L. Markus, Foundations of optimal control theory, John Wiley, New York, 1967. Zbl0159.13201MR220537
- [18] M. Pelletier, Contribution à l'étude de quelques singularités de systèmes non linéaires, Thèse, Université de Bourgogne, 1994.
- [19] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, TAMS, vol. 6, 1905, pp. 237-274. MR1500710JFM36.0669.01
- [20] L. Pontriaguine et al., Théorie mathématique des processus optimaux, ed. Mir., Moscou, 1974. Zbl0289.49002MR358482
- [21] H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions, SIAM J. on Control and Opt., vol. 26, 1988, pp. 899-918. Zbl0656.49007MR948651
- [22] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane : the C∞ non singular case, SIAM J. on Control and Opt., vol. 25, 1987, pp. 433-465. MR877071
- [23] H.J. Sussmann, Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. on Control and Opt., vol. 25, 1987, pp. 1145-1162. Zbl0701.93035MR905037
- [24] R.J. Walker, Algebraic curves, Princeton University Press, Princeton, 1951. Zbl0039.37701MR33083
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.