Classification générique de synthèses temps minimales avec cible de codimension un et applications

B. Bonnard; G. Launay; M. Pelletier

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 1, page 55-102
  • ISSN: 0294-1449

How to cite

top

Bonnard, B., Launay, G., and Pelletier, M.. "Classification générique de synthèses temps minimales avec cible de codimension un et applications." Annales de l'I.H.P. Analyse non linéaire 14.1 (1997): 55-102. <http://eudml.org/doc/78406>.

@article{Bonnard1997,
author = {Bonnard, B., Launay, G., Pelletier, M.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimal time; optimal synthesis; chemical systems; optimal closed loop control},
language = {fre},
number = {1},
pages = {55-102},
publisher = {Gauthier-Villars},
title = {Classification générique de synthèses temps minimales avec cible de codimension un et applications},
url = {http://eudml.org/doc/78406},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Bonnard, B.
AU - Launay, G.
AU - Pelletier, M.
TI - Classification générique de synthèses temps minimales avec cible de codimension un et applications
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 1
SP - 55
EP - 102
LA - fre
KW - minimal time; optimal synthesis; chemical systems; optimal closed loop control
UR - http://eudml.org/doc/78406
ER -

References

top
  1. [1] V.I. Arnold, S.M. Goussein Zadé et A.N. Varchenko, Singularities of differentiable maps, Tome 1, Nauka, Moscou, 1981. Zbl1297.32001
  2. [2] R. Benedetti et J.J. Risler, Real algebraic and semi algebraic sets, Hermann, Paris, 1990. Zbl0694.14006MR1070358
  3. [3] B. Bonnard et I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal, mathematicum, vol. 5, 1993, pp. 111-159. Zbl0779.49025MR1205250
  4. [4] B. Bonnard et J. De Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. on Control and Opt., vol. 33, n° 5, sept. 1995, pp. 1279-1311. Zbl0882.49024MR1348110
  5. [5] B. Bonnard et M. Pelletier, Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one, summary in J. of Mathematical systems, estimation and control, vol. 5, n° 3, 1995. Zbl0852.49014MR1651819
  6. [6] B. Bonnard et M. Pelletier, Time minimal synthesis with target of codimension one under generic conditions, Pub. Banach Center, vol. 32, 1995. Zbl0971.49009
  7. [7] I. Ekeland, Discontinuité des champs hamiltoniens et existence de solutions optimales en calcul des variations, Pub. IHES, n° 47, 1977, pp. 1-32. Zbl0447.49015MR493584
  8. [8] M. Feinberg, Chemical reaction network structure and stability of complex isothermal reactions, Chemical Engineering Sciences, vol. 42, 10, 1987, pp. 2229-2268. 
  9. [9] H. Hermes, Lie algebras of vector fields and local approximation of attainable sets, SIAM J. on Control and Opt., vol. 16, 1978, pp. 715-727. Zbl0388.49025MR493664
  10. [10] C.G. Hill, An introduction to chemical engineering kinetics and reactor design, John Wiley, New York, 1977. 
  11. [11] W. Klingenberg, A course in differential geometry, Graduate texts in Mathematics, Springer Verlag, New York, 1978. Zbl0366.53001MR474045
  12. [12] F. Klok, Broken solutions of homogeneous variational problems, J. of Diff. Equ., vol. 55, 1984, pp. 101-134. Zbl0507.58022MR759829
  13. [13] S. Kobayashi, On conjugate and cut loci, in Studies in global geometry, vol. 4, S. S. Chern ed., Englewood Cliffs, Prentice Hall, NJ, 1967. MR212737
  14. [14] A.J. Krener, The higher-order maximal principle and its applications to singular extremals, SIAM J. on Control and Opt., vol. 15, 1977, pp. 256-293. Zbl0354.49008MR433288
  15. [15] I. Kupka, Geometric theory of extremals in optimal control problems, I. The fold and Maxwell cases, TAMS, vol. 299, 1973, pp. 225-243. Zbl0606.49016MR869409
  16. [16] G. Launay et M. Pelletier, Synthèse optimale avec cible de codimension un : le cas d'arrivée tangentielle, A paraître. 
  17. [17] E.B. Lee et L. Markus, Foundations of optimal control theory, John Wiley, New York, 1967. Zbl0159.13201MR220537
  18. [18] M. Pelletier, Contribution à l'étude de quelques singularités de systèmes non linéaires, Thèse, Université de Bourgogne, 1994. 
  19. [19] H. Poincaré, Sur les lignes géodésiques des surfaces convexes, TAMS, vol. 6, 1905, pp. 237-274. MR1500710JFM36.0669.01
  20. [20] L. Pontriaguine et al., Théorie mathématique des processus optimaux, ed. Mir., Moscou, 1974. Zbl0289.49002MR358482
  21. [21] H. Schättler, The local structure of time-optimal trajectories in dimension 3 under generic conditions, SIAM J. on Control and Opt., vol. 26, 1988, pp. 899-918. Zbl0656.49007MR948651
  22. [22] H.J. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane : the C∞ non singular case, SIAM J. on Control and Opt., vol. 25, 1987, pp. 433-465. MR877071
  23. [23] H.J. Sussmann, Regular synthesis for time-optimal control for single-input real analytic systems in the plane, SIAM J. on Control and Opt., vol. 25, 1987, pp. 1145-1162. Zbl0701.93035MR905037
  24. [24] R.J. Walker, Algebraic curves, Princeton University Press, Princeton, 1951. Zbl0039.37701MR33083

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.