Continuity of spectrum and spectral radius in Banach algebras

Laura Burlando

Banach Center Publications (1994)

  • Volume: 30, Issue: 1, page 53-100
  • ISSN: 0137-6934

Abstract

top
This survey deals with necessary and/or sufficient conditions for continuity of the spectrum and spectral radius functions at a point of a Banach algebra.

How to cite

top

Burlando, Laura. "Continuity of spectrum and spectral radius in Banach algebras." Banach Center Publications 30.1 (1994): 53-100. <http://eudml.org/doc/262788>.

@article{Burlando1994,
abstract = {This survey deals with necessary and/or sufficient conditions for continuity of the spectrum and spectral radius functions at a point of a Banach algebra.},
author = {Burlando, Laura},
journal = {Banach Center Publications},
keywords = {continuity of the spectrum and spectral radius functions at a point of a Banach algebra},
language = {eng},
number = {1},
pages = {53-100},
title = {Continuity of spectrum and spectral radius in Banach algebras},
url = {http://eudml.org/doc/262788},
volume = {30},
year = {1994},
}

TY - JOUR
AU - Burlando, Laura
TI - Continuity of spectrum and spectral radius in Banach algebras
JO - Banach Center Publications
PY - 1994
VL - 30
IS - 1
SP - 53
EP - 100
AB - This survey deals with necessary and/or sufficient conditions for continuity of the spectrum and spectral radius functions at a point of a Banach algebra.
LA - eng
KW - continuity of the spectrum and spectral radius functions at a point of a Banach algebra
UR - http://eudml.org/doc/262788
ER -

References

top
  1. [AK] M. B. Abalovich and N. Y. Krupnik, A topology on the set of maximal ideals of a Banach PI-algebra, Amer. Math. Soc. Transl. (2) 142 (1989), 83-90. 
  2. [Ac1] S. T. M. Ackermans, On the principal extension of complex sets in a Banach algebra, Indag. Math. 29 (1967), 146-150. Zbl0147.33603
  3. [Ac2] S. T. M. Ackermans, A case of strong spectral continuity, ibid. 30 (1968), 455-459. 
  4. [Ap] C. Apostol, The spectrum and the spectral radius as functions in Banach algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 26 (1978), 975-978. Zbl0396.46045
  5. [AFHV] C. Apostol, L. A. Fialkow, D. A. Herrero and D. Voiculescu, Approximation of Hilbert Space Operators, Vol. II, Res. Notes Math. 102, Pitman, 1984. Zbl0572.47001
  6. [AM] C. Apostol and B. B. Morrel, On uniform approximation of operators by simple models, Indiana Univ. Math. J. 26 (1977), 427-442. Zbl0326.47012
  7. [Au1] B. Aupetit, Continuité du spectre dans les algèbres de Banach avec involution, Pacific J. Math. 56 (1975), 321-324. Zbl0306.46072
  8. [Au2] B. Aupetit, Caractérisation spectrale des algèbres de Banach commutatives, ibid. 63 (1976), 23-35. 
  9. [Au3] B. Aupetit, Continuité uniforme du spectre dans les algèbres de Banach avec involution, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), 1125-1127. Zbl0361.46043
  10. [Au4] B. Aupetit, Continuité et uniforme continuité du spectre dans les algèbres de Banach, Studia Math. 61 (1977), 99-114. Zbl0372.46044
  11. [Au5] B. Aupetit, La deuxième conjecture de Hirschfeld-Żelazko pour les algèbres de Banach est fausse, Proc. Amer. Math. Soc. 70 (1978), 161-162. Zbl0384.46030
  12. [Au6] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, 1979. Zbl0409.46054
  13. [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, 1973. 
  14. [B1] L. Burlando, On two subsets of a Banach algebra that are related to the continuity of spectrum and spectral radius, Linear Algebra Appl. 84 (1986), 251-269. Zbl0612.46046
  15. [B2] L. Burlando, Two sets of continuity points of the spectrum and spectral radius functions in an algebra of operators, Istit. Lombardo Accad. Sci. Lett. Rend. A 120 (1986), 135-147 (1987). 
  16. [B3] L. Burlando, Continuity of spectrum and spectral radius in algebras of operators, Ann. Fac. Sci. Toulouse Math. (5) 9 (1988), 5-54. Zbl0618.47003
  17. [B4] L. Burlando, On the problem of invariance under holomorphic functions for a set of continuity points of the spectrum function, Czechoslovak Math. J. 39 (1989), 95-110. Zbl0819.47003
  18. [B5] L. Burlando, On continuity of the spectral radius function in Banach algebras, Ann. Mat. Pura Appl. (4) 156 (1990), 357-380. Zbl0726.46027
  19. [B6] L. Burlando, On continuity of the spectrum function in Banach algebras, Riv. Mat. Pura Appl. 8 (1991), 131-152. Zbl0764.46044
  20. [B7] L. Burlando, On continuity of the spectrum function in Banach algebras with good ideal structure, ibid. 9 (1991), 7-21. Zbl0762.46044
  21. [B8] L. Burlando, Spectral continuity, Atti Sem. Mat. Fis. Univ. Modena 40 (1992), 591-605. Zbl0792.47002
  22. [B9] L. Burlando, Spectral continuity in some Banach algebras, Rocky Mountain J. Math. 23 (1993), 17-39. Zbl0796.46035
  23. [B10] L. Burlando, Banach algebras on which the spectrum function is continuous, to appear. 
  24. [Ca] S. R. Caradus, Generalized Inverses and Operator Theory, Queen's Papers in Pure and Appl. Math. 50, Queen's University, Kingston, Ont., 1978. 
  25. [CPY] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Lecture Notes in Pure Appl. Math. 9, Marcel Dekker, 1974. Zbl0299.46062
  26. [Cl] J. M. Clauss, Elementary chains of invariant subspaces of a Banach space, preprint. 
  27. [Co] J. B. Conway, On the Calkin algebra and the covering homotopy property, Trans. Amer. Math. Soc. 211 (1975), 135-142. Zbl0281.46055
  28. [CM1] J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, Integral Equations Operator Theory 2 (1979), 174-198. Zbl0419.47001
  29. [CM2] J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, II, ibid. 4 (1981), 459-503. Zbl0468.47001
  30. [CM3] J. B. Conway and B. B. Morrel, Behaviour of the spectrum under small perturbations, Proc. Roy. Irish Acad. Sect. A 81 (1981), 55-63. Zbl0493.47010
  31. [CM4] J. B. Conway and B. B. Morrel, Operators that are points of spectral continuity, III, Integral Equations Operator Theory 6 (1983), 319-344. 
  32. [D] Z. Daoultzi-Malamou, Strong spectral continuity in topological matrix algebras, Boll. Un. Mat. Ital. A (7) 2 (1988), 213-219. Zbl0652.46034
  33. [GKre] I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185-264. 
  34. [GKru] I. C. Gohberg and N. Y. Krupnik, Extension theorems for invertibility symbols in Banach algebras, Integral Equations Operator Theory 15 (1992), 991-1010. Zbl0795.46043
  35. [G] M. Gonzalez, A perturbation result for generalised Fredholm operators in the boundary of the group of invertible operators, Proc. Roy. Irish Acad. Sect. A 86 (1986), 123-126. Zbl0594.47010
  36. [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. Zbl0827.46008
  37. [Ha] P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, 1967. 
  38. [He1] D. A. Herrero, Continuity of spectral functions and the lakes of Wada, Pacific J. Math. 113 (1984), 365-371. Zbl0561.47002
  39. [He2] D. A. Herrero, Similarity-invariant continuous functions on ℒ(ℋ), Proc. Amer. Math. Soc. 97 (1986), 75-78. Zbl0593.47013
  40. [HS] D. A. Herrero and N. Salinas, Operators with disconnected spectra are dense, Bull. Amer. Math. Soc. 78 (1972), 525-526. Zbl0261.47005
  41. [HY] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, 1961. 
  42. [J] J. Janas, Note on the spectrum and joint spectrum of hyponormal and Toeplitz operators, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 957-961. Zbl0317.47015
  43. [Ka1] T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. Zbl0090.09003
  44. [Ka2] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, 1966. 
  45. [Kr] N. Y. Krupnik, Banach Algebras with Symbol and Singular Integral Operators, Oper. Theory: Adv. Appl. 26, Birkhäuser, 1987. 
  46. [LS] S. Levi and Z. Słodkowski, Measurability properties of spectra, Proc. Amer. Math. Soc. 98 (1986), 225-231. Zbl0616.46046
  47. [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I. Sequence Spaces, Ergeb. Math. Grenzgeb. 97, Springer, 1977. Zbl0362.46013
  48. [L] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605. Zbl0197.11301
  49. [Mi] B. S. Mityagin, The homotopy structure of the linear group of a Banach space, Russian Math. Surveys 25(5) (1970), 59-103. Zbl0232.47046
  50. [Mu] G. J. Murphy, Continuity of the spectrum and spectral radius, Proc. Amer. Math. Soc. 82 (1981), 619-621. Zbl0474.46038
  51. [N] J. D. Newburgh, The variation of spectra, Duke Math. J. 18 (1951), 165-176. Zbl0042.12302
  52. [P] A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, 1980. 
  53. [PZ1] V. Pták and J. Zemánek, Continuité lipschitzienne du spectre comme fonction d'un opérateur normal, Comment. Math. Univ. Carolin. 17 (1976), 507-512. Zbl0341.47019
  54. [PZ2] V. Pták and J. Zemánek, On uniform continuity of the spectral radius in Banach algebras, Manuscripta Math. 20 (1977), 177-189. Zbl0347.46051
  55. [Q] C. Qiu, Continuity of spectral functions of operators, Chinese Ann. Math. Ser. A 10 (1989), 621-627 (in Chinese). Zbl0764.47004
  56. [R] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960. Zbl0095.09702
  57. [TL] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980. 
  58. [Ze1] J. Zemánek, Spectral radius characterizations of commutativity in Banach algebras, Studia Math. 61 (1977), 257-268. Zbl0321.46037
  59. [Ze2] J. Zemánek, Spectral characterization of two-sided ideals in Banach algebras, ibid. 67 (1980), 1-12. 
  60. [Ze3] J. Zemánek, An analytic Laffey-West decomposition, Proc. Roy. Irish Acad. Sect. A 92 (1992), 101-106. Zbl0785.47008
  61. [Zh] W. Q. Zhang, Continuity of set-valued mappings and some applications to the continuity of spectra of operators, J. Math. (Wuhan) 7 (1987), 285-290 (in Chinese). Zbl0667.47003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.