Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4
Banach Center Publications (1995)
- Volume: 31, Issue: 1, page 275-280
- ISSN: 0137-6934
Access Full Article
topHow to cite
topMiyajima, Kimio. "Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4." Banach Center Publications 31.1 (1995): 275-280. <http://eudml.org/doc/262818>.
@article{Miyajima1995,
author = {Miyajima, Kimio},
journal = {Banach Center Publications},
keywords = {versal deformation; tangent cohomology; pseudo-convex domain},
language = {eng},
number = {1},
pages = {275-280},
title = {Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4},
url = {http://eudml.org/doc/262818},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Miyajima, Kimio
TI - Deformations of a strongly pseudo-convex domain of complex dimension ≥ 4
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 275
EP - 280
LA - eng
KW - versal deformation; tangent cohomology; pseudo-convex domain
UR - http://eudml.org/doc/262818
ER -
References
top- [Ak1] T. Akahori, The new Neumann operator associated with deformations of strongly pseudo-convex domains and its applications to deformation theory, Invent. Math. 68 (1982), 317-352. Zbl0575.32021
- [Ak2] T. Akahori, A criterion for the Neumann type problem over a differential complex on a strongly pseudo-convex domain, Math. Ann. 264 (1983), 525-535. Zbl0563.32009
- [B-K] J. Bingener and S. Kosarew, Lokale Modulräume in der analytischen Geometrie, Aspects of Math., D2, D3, Vieweg-Verlag, Braunschweig, 1987.
- [B-S-W] D. Burns, S. Schnider and R. O. Wells, Deformations of strictly pseudo-convex domains, Invent. Math. 46 (1978), 237-253.
- [E] H. von Essen, Nonflat deformations of modules and isolated singularities, Math. Ann. 287 (1990), 413-427. Zbl0707.14002
- [Fl] H. Flenner, Ein Kriterium für die Offenheit der Versalität, Math. Z. 178 (1981), 449-473. Zbl0453.14002
- [G] A. Galligo, Théorème de division et stabilité en géométrie analytique locale, Ann. Inst. Fourier (Grenoble) 29 (1979), 107-184. Zbl0412.32011
- [M1] K. Miyajima, Deformations of a complex manifold neear a strongly pseudo-convex real hypersurface and a realization of Kuranishi family of strongly pseudo-convex CR structures, Math. Z. 205 (1990), 593-602. Zbl0693.32011
- [M2] K. Miyajima, Kuranishi family of strongly pseudo-convex domains, Osaka Math. J., to appear.
- [M3] K. Miyajima, in preparation.
- [N] S. Nakano, Vanishing theeorems for weakly 1-complete manifolds, II, Publ. R.I.M.S. Kyoto Univ. 10 (1974), 101-110. Zbl0298.32019
- [O] T. Ohsawa, A reduction theorem for cohomology groups of very strongly q-convex Kähler manifolds, Invent. Math. 63 (1981), 335-354. Zbl0457.32007
- [Sch] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. Zbl0167.49503
- [Si] Y.-T. Siu, The 1-convex generalization of Grauert's direct image theorem, Math. Ann. 190 (1971), 203-214. Zbl0197.36101
- [Sp1] K. Spallek, Differenzierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143-162.
- [Sp2] K. Spallek, Zum Satz von Osgood und Hartogs für analytische Moduln. II, Math. Ann. 182 (1969), 77-94. Zbl0172.10501
- [Ti] C. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in: Mathematical Aspects of String Theory, S. T. Yau (ed.), World Scientific, 1987, 629-646.
- [To] A. N. Todorov, The Weil-Petersson geometry of the moduli space of SU(≥ 3) (Calabi-Yau) manifolds I, Comm. Math. Phys. 126 (1989), 325-346. Zbl0688.53030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.