Stationary p-harmonic maps into spheres

Paweł Strzelecki

Banach Center Publications (1996)

  • Volume: 33, Issue: 1, page 383-393
  • ISSN: 0137-6934

How to cite

top

Strzelecki, Paweł. "Stationary p-harmonic maps into spheres." Banach Center Publications 33.1 (1996): 383-393. <http://eudml.org/doc/262857>.

@article{Strzelecki1996,
author = {Strzelecki, Paweł},
journal = {Banach Center Publications},
keywords = {weakly -harmonic map},
language = {eng},
number = {1},
pages = {383-393},
title = {Stationary p-harmonic maps into spheres},
url = {http://eudml.org/doc/262857},
volume = {33},
year = {1996},
}

TY - JOUR
AU - Strzelecki, Paweł
TI - Stationary p-harmonic maps into spheres
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 383
EP - 393
LA - eng
KW - weakly -harmonic map
UR - http://eudml.org/doc/262857
ER -

References

top
  1. [1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1992), 417-443. Zbl0792.53039
  2. [2] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, Cahiers Mathématiques de la Décision, preprint no. 9123, CEREMADE. Zbl0864.42009
  3. [3] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris 309 (1989), 945-949. Zbl0684.46044
  4. [4] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113. Zbl0754.58007
  5. [5] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 585-587. 
  6. [6] C. Fefferman and E. M. Stein, H p spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
  7. [7] M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math., to appear. Zbl0794.58012
  8. [8] M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis 9 (1989), 127-143. Zbl0683.49014
  9. [9] M. Fuchs, p-harmonic obstacle problems. I: Partial regularity theory, Ann. Mat. Pura Appl. 156 (1990), 127-158. Zbl0715.49003
  10. [10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Elsevier, 1985. 
  11. [11] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. Zbl0516.49003
  12. [12] R. Hardt and F. H. Lin, Mappings minimizing the L p -norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555-588. Zbl0646.49007
  13. [13] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris 311 (1990), 519-524. Zbl0728.35014
  14. [14] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, ibid. 312 (1991), 591-596. Zbl0728.35015
  15. [15] F. Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), 203-218. Zbl0718.58019
  16. [16] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 346-367. Zbl0641.58012
  17. [17] S. Müller, Higher integrability of determinants and weak convergence in L 1 , J. Reine Angew. Math. 412 (1990), 20-34. 
  18. [18] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), 131-166. Zbl0521.58024
  19. [19] T. Rivière, Everywhere discontinuous harmonic maps from the dimension 3 into spheres, Centre des Mathématiques et Leurs Applications, ENS-Cachan, preprint no. 9302. Zbl0898.58011
  20. [20] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335. Zbl0521.58021
  21. [21] P. Strzelecki, Regularity of p-harmonic maps from the p-dimensional ball into a sphere, Manuscripta Math., to appear. Zbl0797.58019
  22. [22] H. Takeuchi, Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps, J. Math. Soc. Japan 46 (1994), 217-234. Zbl0817.58011
  23. [23] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. Zbl0488.35017
  24. [24] A. Torchinsky, Real-Variable Methods in Analysis, Academic Press, 1986. 
  25. [25] T. Toro and Ch. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1995), 87-114. Zbl0826.58014
  26. [26] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030
  27. [27] N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222. 
  28. [28] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.