Stationary p-harmonic maps into spheres
Banach Center Publications (1996)
- Volume: 33, Issue: 1, page 383-393
- ISSN: 0137-6934
Access Full Article
topHow to cite
topStrzelecki, Paweł. "Stationary p-harmonic maps into spheres." Banach Center Publications 33.1 (1996): 383-393. <http://eudml.org/doc/262857>.
@article{Strzelecki1996,
author = {Strzelecki, Paweł},
journal = {Banach Center Publications},
keywords = {weakly -harmonic map},
language = {eng},
number = {1},
pages = {383-393},
title = {Stationary p-harmonic maps into spheres},
url = {http://eudml.org/doc/262857},
volume = {33},
year = {1996},
}
TY - JOUR
AU - Strzelecki, Paweł
TI - Stationary p-harmonic maps into spheres
JO - Banach Center Publications
PY - 1996
VL - 33
IS - 1
SP - 383
EP - 393
LA - eng
KW - weakly -harmonic map
UR - http://eudml.org/doc/262857
ER -
References
top- [1] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1992), 417-443. Zbl0792.53039
- [2] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compensated compactness and Hardy spaces, Cahiers Mathématiques de la Décision, preprint no. 9123, CEREMADE. Zbl0864.42009
- [3] R. Coifman, P. Lions, Y. Meyer and S. Semmes, Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris 309 (1989), 945-949. Zbl0684.46044
- [4] L. C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), 101-113. Zbl0754.58007
- [5] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 585-587.
- [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. Zbl0257.46078
- [7] M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math., to appear. Zbl0794.58012
- [8] M. Fuchs, Some regularity theorems for mappings which are stationary points of the p-energy functional, Analysis 9 (1989), 127-143. Zbl0683.49014
- [9] M. Fuchs, p-harmonic obstacle problems. I: Partial regularity theory, Ann. Mat. Pura Appl. 156 (1990), 127-158. Zbl0715.49003
- [10] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Elsevier, 1985.
- [11] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton University Press, Princeton, 1983. Zbl0516.49003
- [12] R. Hardt and F. H. Lin, Mappings minimizing the -norm of the gradient, Comm. Pure Appl. Math. 40 (1987), 555-588. Zbl0646.49007
- [13] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une sphère, C. R. Acad. Sci. Paris 311 (1990), 519-524. Zbl0728.35014
- [14] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, ibid. 312 (1991), 591-596. Zbl0728.35015
- [15] F. Hélein, Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math. 70 (1991), 203-218. Zbl0718.58019
- [16] S. Luckhaus, Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold, Indiana Univ. Math. J. 37 (1988), 346-367. Zbl0641.58012
- [17] S. Müller, Higher integrability of determinants and weak convergence in , J. Reine Angew. Math. 412 (1990), 20-34.
- [18] P. Price, A monotonicity formula for Yang-Mills fields, Manuscripta Math. 43 (1983), 131-166. Zbl0521.58024
- [19] T. Rivière, Everywhere discontinuous harmonic maps from the dimension 3 into spheres, Centre des Mathématiques et Leurs Applications, ENS-Cachan, preprint no. 9302. Zbl0898.58011
- [20] R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982), 307-335. Zbl0521.58021
- [21] P. Strzelecki, Regularity of p-harmonic maps from the p-dimensional ball into a sphere, Manuscripta Math., to appear. Zbl0797.58019
- [22] H. Takeuchi, Some conformal properties of p-harmonic maps and a regularity for sphere-valued p-harmonic maps, J. Math. Soc. Japan 46 (1994), 217-234. Zbl0817.58011
- [23] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations, 51 (1984), 126-150. Zbl0488.35017
- [24] A. Torchinsky, Real-Variable Methods in Analysis, Academic Press, 1986.
- [25] T. Toro and Ch. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1995), 87-114. Zbl0826.58014
- [26] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), 219-240. Zbl0372.35030
- [27] N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968), 184-222.
- [28] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.